COAL COMBUSTION RESIDUALS (CCR) GROUNDWATER MONITORING AND CORRECTIVE ACTION ANNUAL REPORT

CHOCTAW GENERATION LIMITED PARTNERSHIP, L.L.L.P.
2391 PENSACOLA ROAD
ACKERMAN, MS 39735
(662) 387-5758

JANUARY 30, 2022

ECS SAFETY, INC.

Post Office Box 356 Sherman, Mississippi 38869 Office: (662) 840-5945 Fax: (662) 840-5965 www.envirocomp.net

TABLE OF CONTENTS

1.0	INTR	ODUCTION	1				
	1.1 1.2 1.3	Site Description and Regulatory Applicability Annual Report Requirements Professional Engineer Certification	2				
2.0	OVE	RVIEW: DETECTION AND ASSESSMENT MONITORING	5				
	2.1 2.2	Detection Monitoring Program					
3.0	GRO	UNDWATER MONITORING SYSTEM	8				
	3.1 3.2 3.3	Current Groundwater Monitoring System Monitoring Well Installation Monitoring Well Decommissioning	9				
4.0	GROUNDWATER MONITORING DATA						
	4.1 4.2 4.3	Sample Requirements	12				
5.0	ADDI	ITIONAL INFORMATION	17				
	5.1 5.2 5.3	Alternative Monitoring Frequency Demonstration of Invalid Statistically Significant Increase Time Extension for Corrective Measures Assessment	17				
6.0	CON	CLUSION	19				
	6.1 6.2	Summary of Key Actions Completed Key Activities for Upcoming Year	19 19				

FIGURES:

Figure 1: Site Location Map Figure 2: Facility Diagram

APPENDICES:

Appendix A: Potentiometric Surface Maps

Appendix B: Analytical Results and Chain-of-Custody Forms

Appendix C: Field Sampling Data

Appendix D: 2021 Groundwater Monitoring Summary

1.0 INTRODUCTION

1.1 SITE DESCRIPTION AND REGULATORY APPLICABILITY

The Choctaw Generation Limited Partnership, LLLP (Choctaw Generation) is located near the City of Ackerman in Choctaw County, Mississippi. Choctaw Generation is in north central Mississippi on a 170-acre site. Choctaw Generation is bounded on the south by Pensacola Road, and is about ½ mile west of US Highway 9. Figure 1 shows the location of the site. Choctaw Generation operates a single unit electrical generation facility designed to generate electricity for dispatch to the Tennessee Valley Authority (TVA) electrical system. The primary boiler fuel is lignite coal. As a result of combusting lignite coal, ash is created and must be disposed or re-purposed. Choctaw Generation owns and operates an existing Ash Management Unit (AMU) for the placement and disposal of ash. The AMU (or CCR unit) is located in the northeastern portion of the property and consists of three (3) cells, as shown in Figure 2. The CCR unit encompasses approximately 64 acres of the Choctaw Generation site.

The site is currently regulated by the Mississippi Department of Environmental Quality (MDEQ) Solid Waste Regulations and Solid Waste Permit No. SW0100040462. The site is now also required to comply with the Groundwater Monitoring and Corrective Action requirements of 40 CFR Part 257, Subpart D – Standards for the Disposal of Coal Combustion Residuals (CCR) in Landfills and Surface Impoundments. As an existing CCR landfill, the site was required to be in compliance with the following groundwater monitoring requirements by October 17, 2017:

Install a groundwater monitoring system as required by §257.91;
Develop a groundwater sampling and analysis program to include selection of the statistical procedures to be used for evaluating groundwater monitoring data as required by §257.93;
Initiate the detection monitoring program to include obtaining a minimum of eight (8 independent samples for each background and downgradient well as required by §257.94(b) and
Evaluate groundwater monitoring data for statistically significant increases over background levels for the constituents listed in Appendix III of Subpart D as required by §257.94.

The Choctaw Generation groundwater monitoring system was completed in accordance with the groundwater monitoring performance standards of §257.91 by June 2016. The initial Choctaw Generation CCR unit groundwater monitoring system consisted of three (3) background or upgradient wells and eight (8) downgradient wells. A Groundwater Monitoring Plan was developed in August 2016 in accordance with the groundwater sampling and analysis program requirements of §257.93. The Groundwater Monitoring Plan was updated in January 2019 to address an additional well installed at the site. The current Groundwater Monitoring Plan is available in the Choctaw Generation Operating Record and CCR Web Site. Sampling of the groundwater wells is conducted in accordance with the most current version of the

Groundwater Monitoring Plan. Eight (8) independent samples were collected and analyzed prior to October 17, 2017, initiating the groundwater monitoring program at the site.

Over time, wells have been replaced, added, and removed due to compromised well integrity as well as change in monitoring requirements. These changes are discussed further in Section 3.0. The current Choctaw Generation CCR unit groundwater monitoring system consists of three (3) background or upgradient wells and seven (7) downgradient wells which ensure complete coverage of the CCR unit. A facility diagram showing the monitoring well locations is included as Figure 2.

1.2 ANNUAL REPORT REQUIREMENTS

Choctaw Generation is required to prepare an annual groundwater monitoring and corrective action report (the Annual Report) no later than January 31, 2018, and annually thereafter, and place the report in the Operating Record. The Annual Report is also made available on the CCR Web Site within 30 days of filing the report in the Operating Record. The Annual Report must be maintained in the Operating Record and on the CCR Web Site for at least five (5) years.

Per §257.90(e), the Annual Report must document the status of the groundwater monitoring and corrective action program for the CCR unit, summarize key actions completed, describe any problems encountered, discuss actions to resolve the problems, and project key activities for the upcoming year. At a minimum, the Annual Report must contain the following information, to the extent available:

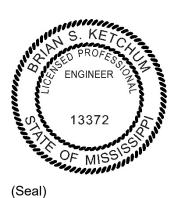
A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit;
Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;
In addition to all the monitoring data obtained under §§257.90 through 257.98, a summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs;
A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels); and
Other information required to be included in the annual report as specified in §§257.90 through 257.98.

- ☐ A section at the beginning of the annual report that provides an overview of the current status of groundwater monitoring and corrective action programs for the CCR unit. At a minimum, the summary must specify all of the following:
 - At the start of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in §257.94 or the assessment monitoring program in §257.95;
 - At the end of the current annual reporting period whether the CCR unit was operating under the detection monitoring program in §257.94 or the assessment monitoring program in §257.95;
 - If it was determined that there was a statistically significant increase over background for one or more constituents listed in appendix III to the part pursuant to §257.94(e);
 - Identify those constituents listed in appendix III to this part and the names
 of the monitoring wells associated with such an increase; and
 - Provide the date when the assessment monitoring program was initiated for the CCR unit.
 - If it was determined that there was a statistically significant level above the groundwater protection standard for one or more constituents listed in appendix IV to this part pursuant to §257.95(g) include all of the following:
 - Identify those constituents listed in appendix IV to this part and the names
 of the monitoring wells associated with such an increase;
 - Provide the date when the assessment of corrective measures was initiated for the CCR unit;
 - Provide the date when the public meeting was held for the assessment of corrective measures for the CCR unit; and
 - Provide the date when the assessment of corrective measures was completed for the CCR unit.
 - Whether a remedy was selected pursuant to §257.97 during the current annual reporting period, and if so, the date of the remedy selection; and
 - Whether remedial activities were initiated or are ongoing pursuant to §257.98 during the current annual reporting period.

To comply with the requirements above, a map of the CCR unit and all upgradient and downgradient monitoring wells that are part of the current groundwater monitoring system are shown on Figure 2. Section 2 contains an overview and discussion of the status and any transition between monitoring programs (i.e., detection monitoring versus assessment monitoring) and the reason such monitoring program is in place. A discussion of the current monitoring well system and any monitoring wells installed or decommissioned is provided in Section 3.0. A summary of the monitoring data obtained during the annual reporting period is provided in Section 4.0. Section 5.0 presents additional information required by §§257.90 through 257.98 to be included in the Annual Report and which is not already addressed in the prior sections. Finally, Section 6.0 summarized actions completed during the reporting year and projects key activities planned for the following reporting year.

1.3 PROFESSIONAL ENGINEER CERTIFICATION

The undersigned Registered Professional Engineer is familiar with the requirements of 40 CFR Part 257, Subpart D and certifies that the Groundwater Monitoring and Corrective Action Annual Report was prepared under his/her direct supervision, in accordance with the requirements of 40 CFR 257.90 through 257.98. The undersigned Registered Professional Engineer certifies under penalty of the law that all information and statements provided in this report (including attachments), based on information and belief formed after reasonable inquiry, are true, accurate, and complete.


Brian S. Ketchum, PE

Registration Number: 13372

State of Mississippi

1/30/2022

Date Signed

2.0 OVERVIEW: DETECTION AND ASSESSMENT MONITORING

Choctaw Generation began the reporting year and is currently subject to the Assessment Monitoring Program requirements of §257.95, and groundwater monitoring as required by this program is discussed in Section 4.0. A description of both the Detection Monitoring Program and Assessment Monitoring Program is provided below and includes a history of the monitoring as well any changes that occurred during the previous calendar year.

2.1 DETECTION MONITORING PROGRAM

For existing CCR landfills, including the Choctaw Generation AMU, a minimum of eight (8) independent samples from each background and downgradient well must be collected and analyzed for the constituents listed in Appendix III and Appendix IV of 40 CFR 257, Subpart D by no later than October 17, 2017. These constituents are listed in Tables 3-1 and 3-2. After the eight (8) initial sampling events are completed to develop background data, the detection monitoring must be performed on a semiannual basis during the active life of the CCR unit and the post-closure period unless assessment monitoring is triggered.

In accordance with the requirements of the Detection Monitoring Program in §257.94(b), one (1) sample from each background (or upgradient) and downgradient well was analyzed for the seven (7) parameters in Appendix III on February 6-7, 2018. An evaluation of these results indicated statistically significant increases (SSI) above the prediction limits established during background monitoring for the following parameters in the associated wells: chloride (MW-9, MW-12, and MW-16), fluoride (MW-9 and OW-2), sulfate (CCR-3, MW-9, MW-12, MW-16, and OW-2), and TDS (CCR-3, MW-9, and MW-16). Therefore, the requirements of the Assessment Monitoring Program were triggered.

2.2 ASSESSMENT MONITORING PROGRAM

Due to SSI exceedances determined during the initial detection monitoring event of February 6-7, 2018, Choctaw Generation triggered the Assessment Monitoring Program under §257.95. Choctaw Generation conducted the initial annual assessment monitoring event on May 15-16, 2018 for all Appendix IV constituents. Choctaw Generation then conducted the first semiannual assessment monitoring event on September 10-11, 2018 and the subsequent semiannual assessment monitoring event on March 19-20, 2019 for all Appendix III constituents and the ten (10) Appendix IV constituents previously detected during the annual Appendix IV monitoring event. The annual monitoring for all Appendix IV constituents was conducted again on May 29-30, 2019. Based on the sampling results, twelve (12) Appendix IV constituents were detected, adding selenium and molybdenum to the Appendix IV constituents to be monitored during semiannual assessment monitoring events. The next two (2) semiannual assessment monitoring events were conducted on September 10-11, 2019 and March 25-26, 2020. These events included sampling for all Appendix III constituents and those Appendix IV constituents detected during the 2019 annual monitoring

event. The next annual monitoring for all Appendix IV constituents was conducted on May 18, 2020, in which no new Appendix IV constituents were detected requiring no new constituents to be sampled in subsequent semiannual assessment monitoring events. The next two (2) semiannual assessment monitoring events were conducted on September 28, 2020 and March 15-16, 2021. These events included sampling for all Appendix III constituents and those Appendix IV constituents detected during the 2020 annual monitoring event. The next annual monitoring for all Appendix IV constituents was conducted on May 26, 2021, in which no new Appendix IV constituents were detected requiring no new constituents to be sampled in subsequent semiannual assessment monitoring events. Although the 2021 annual monitoring event is required to include Appendix IV constituents only, the laboratory analyzed the samples for boron and calcium (Appendix III) in addition to all Appendix IV constituents. Therefore, these results are included as part of this annual report, and the detected Appendix IV constituents used for subsequent semiannual events in addition to all Appendix III constituents. All current Appendix IV constituents that are sampled during the semiannual assessment monitoring events are listed in Section 4.3. The second semiannual assessment monitoring event for 2021 was conducted on September 8, 2021 and included sampling for all Appendix III constituents and those Appendix IV constituents detected during the 2021 annual monitoring event.

If the concentrations of all constituents listed in Appendix III and Appendix IV are shown to be at or below background concentrations for two consecutive monitoring events, Choctaw Generation may return to detection monitoring. If the concentration of any Appendix III or IV constituent is verified to be above the background values, but all concentrations are below the GWPS, Choctaw Generation must continue assessment monitoring. If one or more Appendix IV constituents are detected at a statistically significant level (SSL) above the GWPS in any monitoring event, Choctaw Generation must implement correction actions. GWPS for all constituents detected during the initial and subsequent assessment monitoring events were established per the procedures in §257.95(h). The Appendix III and Appendix IV results from the sampling conducted during the reporting period, the background concentrations (or "prediction limits") established under §257.94(b), and the GWPS established under §257.95(d)(2) are included as Appendix D of the Annual Report.

Due to a verified statistically significant increase (SSI) of Appendix IV constituents above the GWPS (lithium in monitoring wells CCR-3 and MW-9 and cobalt in monitoring wells MW-9, MW-12, and MW-15), Choctaw Generation initiated an assessment of corrective measures on January 30, 2019. The Assessment of Corrective Measures (ACM) Report was completed on June 29, 2019, after a 60-day extension.

After review of the monitoring analytical data from the 2019 period, trends in groundwater concentration led to the prospect that the detection of lithium, cobalt, beryllium (not verified), and molybdenum (not verified) at a SSL above the GWPS could have been from an alternate source rather than a potential release of the

CCR unit or associated AMU basin. As discussed in Section 5.2, An Alternate Source Demonstration (ASD) was then successfully completed on December 17, 2019, providing an evidential conclusion that cobalt and lithium detected at SSLs were indeed a result of an alternate source. Due to the successful ASD, Choctaw Generation immediately ceased and discontinued corrective measure activities and continued assessment monitoring. Beryllium was then detected at a SSL above the GWPS in MW-9 during the 2020 annual assessment monitoring event and verified in the second semiannual assessment monitoring event on September 28, 2020. After research and review of analytical data, the ASD was then revised on August 20, 2020 to successfully address beryllium. Therefore, Choctaw Generation has continued in assessment monitoring.

3.0 GROUNDWATER MONITORING SYSTEM

3.1 CURRENT GROUNDWATER MONITORING SYSTEM

The owner or operator of a CCR unit must install a groundwater monitoring system that consists of a sufficient number of wells, installed at appropriate locations and depths, to yield groundwater samples from the uppermost aquifer. The system should accurately represent the quality of background groundwater that has not been affected by leakage from a CCR unit (i.e., upgradient wells). In addition, the system should accurately represent the quality of groundwater passing the waste boundary of the CCR unit (i.e., downgradient wells). The downgradient wells should be installed at the waste boundary to ensure detection of groundwater contamination in the uppermost aquifer. The number, spacing, and depths of groundwater monitoring wells within the system were determined based upon site-specific technical information that included an assessment of items such as:

	Aquifer	thickness an	d groundwat	er flow o	direction;	and
--	---------	--------------	-------------	-----------	------------	-----

□ Saturated and unsaturated geologic units and fill materials overlying the uppermost aquifer, materials comprising the uppermost aquifer, and materials comprising the confining unit defining the lower boundary of the uppermost aquifer, including, but not limited to, thicknesses, stratigraphy, lithology, hydraulic conductivities, porosities and effective porosities.

The groundwater monitoring system must include a minimum number of monitoring wells necessary to meet the performance standards and information specified above. The direction of groundwater flow through the CCR unit is to the north-northwest, which has been consistently determined through ongoing solid waste permit groundwater monitoring events. The locations for the monitoring wells were based upon the known direction of groundwater movement. The monitoring wells screen the uppermost laterally continuous aquifer below the base of ash fill. The base of ash fill is at an approximate elevation of 480 feet mean sea level (msl). The zone is screened and monitored at an approximate elevation of 470 feet msl, but varies across the site and through the unit.

The system must contain a minimum of at least one (1) upgradient and three (3) downgradient monitoring wells. The initial Choctaw Generation CCR unit groundwater monitoring system consisted of three (3) background or upgradient wells and eight (8) downgradient wells to ensure complete coverage of the CCR unit, which consists of three (3) ash disposal cells covering approximately 64 acres. An additional downgradient well was added in August 2018 (CCR-5) and three more downgradient wells were installed in May 2019 (i.e., CCR-6, CCR-7, and CCR-8). Additionally, one downgradient well (MW-16) was replaced in May 2019 by MW-17 due to subsidence of the surface soils, which compromised the well integrity. In 2020, MW-15 and MW-17 were removed due to compromised well integrity and the wells located on the mine (i.e., CCR-6, CCR-7, and CCR-8) were removed from the current groundwater system as they are no longer needed for delineation in response to corrective measure requirements. As a result, the current

CCR unit groundwater monitoring system consists of three (3) background or upgradient wells and seven (7) downgradient wells. A map showing the monitoring well locations is included as Figure 2, and a summary of the current wells is included as Table 2-1 below. Monitoring wells were installed according to the guidelines established in the 1994 USEPA Region IV RCRA Subtitle D Training Manual (SDTM, 1994), or other generally accepted guidelines, and are believed to meet the requirements of 40 CFR Part 257, Subpart D. For more detailed procedures related to the installation of the current groundwater monitoring system, refer to the CCR Groundwater Monitoring Plan available in the facility Operating Record and CCR Web Site.

Table 2-1: Groundwater Monitoring Wells

Well No.	Background or Down-gradient	Elevation* (ft)	Well Depth (ft)	Well Dia. (inches)
CCR-2	Downgradient	542.50	84.50	4
CCR-3	Downgradient	504.78	53.00	4
CCR-4	Downgradient	505.68	53.00	4
CCR-5	Downgradient	470.46	34.55	4
MW-7	Background (Upgradient)	571.76	56.92	4
MW-9	Downgradient	480.04	21.74	4
MW-12	Downgradient	474.19	19.09	4
MW-13	Background (Upgradient)	584.48	106.00	4
MW-14	Background (Upgradient)	593.84	60.97	4
OW-2	Downgradient	489.40	27.05	4

^{*}Elevations were re-surveyed on November 14, 2019. Updated elevations will be used to determine groundwater elevation in subsequent monitoring events.

Sections 3.2 and 3.3 discuss changes to the groundwater monitoring system that took place during the reporting period.

3.2 MONITORING WELL INSTALLATION

There were no new wells installed during the 2021 period. For any future well installations, MDEQ will be notified of the groundwater installation project using a State Well Report along with a Soil Boring Log and a Monitoring Well Schematic for each of the groundwater monitoring wells installed.

3.3 MONITORING WELL DECOMMISSIONING

Monitoring wells must be maintained and appropriately cased in a manner that maintains the integrity of the monitoring well borehole throughout the life of the monitoring program. As noted in Section 3.1, the integrity of downgradient wells MW-15 and MW-17 were compromised during the 2020 period. The

monitoring v	vell blug	and ah	andonm	ent proje	act for	these we	lle was the	n condu	cted o	η Λιια	uet 26 - 21	721 in
accordance												
decommissi												

4.0 GROUNDWATER MONITORING DATA

4.1 SAMPLING REQUIREMENTS

The monitoring well samples collected for laboratory analysis along with the duplicate samples and field blanks were submitted to Micro-Methods Laboratories in Ocean Springs, Mississippi. Sampling was conducted in accordance with the CCR Groundwater Monitoring Plan. The samples were analyzed for constituents listed in Appendix III and/or Appendix IV of 40 CFR 257, Subpart D (depending on the type of monitoring event) as listed in Tables 4-1 and 4-2 below. Metals were analyzed as total recoverable metals from unfiltered samples.

Table 4-1: Appendix III Constituents

Tuble + 1. Appendix iii Constituento								
40 CFR 257, Subpa Assessment Monito		Constitue	ents for Backgro	ound and Subs	sequent Detection and			
Parameter	Analytical Method	C	ontainer	Preservative	Holding Time			
Boron	200.7	Р	500mL	NA	6 months			
Calcium	200.7	Р	500mL	NA	6 months			
Chloride	4500-CI-B	Р	1000mL	NA	28 days			
Fluoride	4500-F-D	Р	1000mL	NA	28 days			
pН		Meas	ured and monitor	red in the field.				
Sulfate	4110B	Р	1000mL	NA	28 days			
TDS	2540C	Р	1000mL	NA	7 days			

Table 4-2: Appendix IV Constituents

40 CFR 257, Subpart D, Appendix IV – Constituents for Background and Assessment Monitoring										
Parameter	Analytical Method	Co	ontainer	Preservative	Holding Time					
Antimony	200.8	Р	500mL	NA	6 months					
Arsenic	200.8	Р	500mL	NA	6 months					
Barium	200.8	Р	500mL	NA	6 months					
Beryllium	200.8	Р	500mL	NA	6 months					
Cadmium	200.8	Р	500mL	NA	6 months					
Chromium	200.8	Р	500mL	NA	6 months					
Cobalt	200.8	Р	500mL	NA	6 months					
Fluoride	4500-F-C	Р	1000mL	NA	28 days					
Lead	200.8	Р	500mL	NA	6 months					
Lithium	200.7	Р	500mL	NA	6 months					
Mercury	245.1	Р	500mL	NA	28 days					
Molybdenum	200.8	Р	500mL	NA	6 months					
Selenium	200.8	Р	500mL	NA	6 months					

40 CFR 257, Subpart	t D, Appendix IV -	- Constitue	ents for Backgr	ound and Asse	essment Monitoring
Parameter	Analytical Method	Co	ntainer	Preservative	Holding Time
Thallium	200.8	Р	500mL	NA	6 months
Radium 226/228	901.1	Р	1000mL	NA	NA

T = Teflon, P = Plastic, G = Glass, NA = Not Applicable

4.2 GROUNDWATER ELEVATION AND FLOW

Groundwater elevation is measured in each monitoring well immediately prior to purging each time groundwater is sampled. Table 4-3 provides a summary of the groundwater elevation recorded for each well during each of the monitoring events. A potentiometric surface map was developed for each monitoring event based on the measured static water levels and the top-of-case (TOC) elevations. Also, the rate of groundwater flow is determined for each event and the direction of flow is summarized in the table and provided on the potentiometric surface maps included in Appendix A. Groundwater flow velocity (v) is estimated using the hydraulic conductivity (K) of the groundwater zone, the effective porosity (η_e), and the hydraulic gradient (dh/dl). The groundwater flow velocity in feet/year is estimated using the following

equation:
$$v = \frac{K}{\eta_e} \left(\frac{dh}{dl} \right)$$
.

Conductivity and porosity are dependent on the soil type in the saturated zone. Based on boring logs, the soils in the screened saturated zone are predominantly silt, clay, and silty-clay units. These Clayey Wilcox sediments were investigated and found to have hydraulic conductivities generally less than 1.0 x 10⁻⁶ cm/sec, and in many cases 1.0 x 10⁻⁸ cm/sec or less, as noted in the Special/Industrial Waste Permit Application prepared by Malcolm Pirnie (March 1998). As a conservative measure of groundwater flow the highest permeability measured at site of 2.0 x 10⁻⁵ cm/sec has been used. An effective porosity of 0.44 was used based on a mix of silty clay and clay of varying plasticity found in the saturated zone. Previously, the hydraulic gradient was determined for each monitoring event using the difference in groundwater elevations at upgradient monitoring well, MW-14, and downgradient monitoring well, MW-15, which are approximately 3,025 feet apart. Since the integrity of the downgradient well, MW-15, was compromised, the hydraulic gradient is now determined for each monitoring event using an average of the difference in groundwater elevations at upgradient well, MW-14, and downgradient monitoring well, CCR-2, which are approximately 1,800 feet apart, and of the difference in groundwater elevations at upgradient well, MW-13, and downgradient monitoring well, CCR-4, which are approximately 1,860 feet apart.

As noted in Table 4-3 and from the potentiometric surface maps (provided in Appendix A), groundwater in the vicinity of the CCR unit flows north-northwest. Also, as noted during the background sampling period, groundwater elevation changed very little in each monitoring well sampled during the 2021 reporting period, indicating that seasonal variability does not significantly impact groundwater at the site. Groundwater flow

is relatively slow due to the low hydraulic conductivity of the soils and was calculated to be 1.5 feet per year

based on the 2021 data. This is consistent with the flows calculated for previous monitoring events, as

shown in Table 4-3.

4.3 **GROUNDWATER SAMPLING RESULTS**

The analytical results from the collected samples, the chain-of-custody, and the laboratory quality

assurance and quality control (QA/QC) information are provided in Appendix B. In addition to the

groundwater samples taken from each of the monitoring wells, a duplicate sample and field blank were

collected and analyzed for the required constituents. Temperature, pH, conductivity, turbidity, purge

volume, and elapsed purge time were monitored while purging each well. The field data collected while

purging and sampling each well using the low stress purging and sampling methodology is included in

Appendix C. The data includes monitored field parameters (pH, temperature, turbidity, conductivity), water

levels, well depth, drawdown, purge rate, purge volume, and purge time.

The summary of results for sampling conducted during the reporting year is available in Appendix D. For

those constituents not detected during a given monitoring event, the value is indicated as "less than" (or <)

the minimum reporting level (MRL). Results from the upgradient wells were used to establish the

background groundwater quality for each constituent, which is the interwell prediction limit determined using

the approved statistical procedures. Because statistically significant increases (SSI) of constituents were

verified during the initial detection monitoring event in 2018, GWPS were established per the requirements

of §257.95(d)(2) for Appendix IV constituents and are compared to current and future sampling results.

A semiannual assessment monitoring event was conducted on March 15-16, 2021. During this event, all

Appendix III constituents and those Appendix IV constituents detected during monitoring conducted May

18, 2020, were analyzed. The following Appendix IV constituents exceeded the GWPS at the well locations

noted below for this monitoring event:

Beryllium: MW-9

Cobalt: CCR-3, CCR-5, MW-9, and MW-12

Lithium: CCR-3, CCR-5, and MW-9

The annual monitoring for all Appendix IV constituents, required by §257.95(b), was conducted May 26,

2021. As mentioned in Section 2.2, although the annual monitoring event is required to include Appendix

IV constituents only, the laboratory analyzed the samples for boron and calcium (Appendix III) in addition

to all Appendix IV constituents. Therefore, these results are included as part of this annual report, and the

detected Appendix IV constituents used for subsequent semiannual events in addition to all Appendix III

constituents. Based on these results, the following Appendix IV constituents will be monitored during the

next two semiannual assessment monitoring events:

- Antimony
- Arsenic
- Barium
- Beryllium
- Cadmium
- Chromium
- Cobalt
- Fluoride
- Lead
- Lithium
- Molybdenum
- Selenium
- Radium 226 and 228 combined

Additionally, the results from this annual event were compared to the GWPS. The following Appendix IV constituents exceeded the GWPS at the well locations noted below for this monitoring event:

• Beryllium: MW-9

Cobalt: CCR-3, CCR-5, MW-9, and MW-12

Lithium: CCR-3 and MW-9

The next semiannual assessment monitoring event was conducted on September 8, 2021. The following Appendix IV constituents exceeded the GWPS at the well locations noted below for this monitoring event:

• Cobalt: CCR-5, MW-9, and MW-12

• Lithium: CCR-3, CCR-5, and MW-9

Although antimony, cadmium, chromium, lead, and molybdenum were not detected in the 2021 annual monitoring event, these Appendix IV constituents will still be monitored during the semiannual events since they were detected in previous assessment monitoring events. Antimony, cadmium, chromium, mercury, molybdenum, and thallium were not detected in any of the monitoring events during the 2021 period. Arsenic was detected in CCR-5 in the first two events. The detected concentrations were an order of magnitude below the GWPS, and the location of the well, the property boundary, suggests that arsenic is not a result of site operations. Barium is naturally occurring and has been detected in all monitoring wells, both upgradient and downgradient. However, the results have generally been at least an order of magnitude lower than the GWPS and have shown decreasing trends in most wells. Fluoride was detected in one of the three upgradient wells, MW-7, as well as three (3) of the downgradient wells, CCR-3, MW-9, and OW-2. Therefore, there may be sources of naturally occurring fluoride in the area. Concentrations of fluoride in both upgradient and downgradient wells are approximately an order of magnitude below the

GWPS, with trends varying across the wells. Lead was detected in one (1) monitoring well, MW-9, and the concentration was an order of magnitude below the GWPS. Selenium was detected during one (1) monitoring event in two (2) downgradient wells, CCR-5 and MW-9. The concentrations were an order of magnitude below the GWPS and were below the detection limit during the 2021 semiannual monitoring events.

Cobalt exceeded the GWPS during the 2021 assessment monitoring events in four (4) downgradient wells, including CCR-3, CCR-5, MW-9, and MW-12. Cobalt has been prevalent in these wells, including the background sampling. Lithium exceeded the GWPS three (3) wells, CCR-3, CCR-5, and MW-9, during the both 2021 semiannual assessment monitoring events, and in two (2) wells, CCR-3 and MW-9, during the annual assessment monitoring event in May. The concentrations of lithium in CCR-3 declined over the 2021 period while the concentration in MW-9 is trending down compared to historical concentrations. Lithium concentrations in CCR-5 appear to be relatively stable and detected concentrations are only slightly above the GWPS. Lithium was also detected in OW-2 during the last assessment monitoring event, but the detection level was below both the prediction limit and the GWPS for this constituent. Beryllium exceeded the GWPS, which is only 5 ppb, in MW-9 in the first two (2) assessment monitoring events of 2021. The beryllium concentration in MW-9 dropped below the GWPS for the second semiannual monitoring event and has not been verified or detected in any other well during any monitoring event.

Table 4-3: Groundwater Elevation (feet) and Flow Rate (feet/yr)

Date	CCR-2	CCR-3	CCR-4	CCR-5	CCR-6	CCR-7	CCR-8	MW-7	MW-9	MW-12	MW-13	MW-14	MW-15	MW-16	MW-17	OW-2	Flow Rate	Flow Direction
	Background Monitoring																	
7/26-27/16	488.60	473.59	478.46					538.60	471.49	466.92	499.10	564.91	477.50	480.26		476.80	1.4	NNW
8/22-23/16	488.63	473.33	478.41					538.03	471.74	466.97	498.85	563.94	477.19	480.49		476.50	1.3	NNW
9/12-13/16	488.22	472.96	478.36					538.02	470.97	466.09	498.82	563.12	476.74	480.15		476.20	1.3	NNW
10/17-18/16	488.05	472.69	478.61					537.93	471.17	465.56	498.48	560.56	476.19	479.24		476.00	1.3	NNW
11/9-10/16	487.69	472.41	478.16					537.52	471.32	465.45	497.83	559.08	475.78	479.10		475.50	1.3	NNW
11/28-29/16	487.55	472.38	478.17					536.13	471.47	465.97	497.60	560.51	476.16	479.61		475.64	1.3	NNW
2/8-9/17	488.17	474.06	478.95					537.95	473.34	471.27	498.21	563.49	478.87	481.70		477.60	1.3	NNW
3/29-30/17	488.36	474.82	478.81					537.74	472.44	470.17	498.58	565.88	478.83	486.60		477.40	1.4	NNW
								Detec	ction Mon	itoring								
2/6-7/18	489.83	475.11	478.84					537.58	473.60	471.47	499.40	562.15	478.92	481.87		477.49	1.3	NNW
								Asses	sment Mo	nitoring								
5/15-16/18	489.73	476.19	478.98					538.66	472.82	468.07	501.08	566.41	478.93	481.36		478.19	1.4	NNW
9/10-11/18	488.34	473.95	478.28	460.73				537.84	472.98	468.60	499.16	562.19	477.16	480.72		476.59	1.3	NNW
3/19-20/19 ⁽¹⁾	491.92	479.69	481.38	463.41				538.06	482.28	470.24	521.24	565.69	480.70	NS		478.80	1.3	NNW
5/29-30/19 ⁽¹⁾	491.62	478.76	480.84	462.75	459.91	487.14	462.79	538.47	471.56	466.67	521.42	565.63	480.20	NS	478.65	478.98	1.3	NNW
9/10-11/19 ⁽¹⁾	491.28	479.91	480.43	462.02	458.71	487.01	462.04	538.35	470.61	466.33	521.15	565.16	478.83	NS	477.73	477.57	1.3	NNW
3/25-26/20(2)	493.83	479.8	481.27	463.93	NS	NS	NS	541.78	472.53	470.5	525.6	565.94	NS	NS	479.84	479.48	1.5	NNW
5/18/20 ⁽²⁾	491.75	477.25	480.78	463.05	NS	NS	NS	538.71	471.23	468.88	526.48	565.59	NS	NS	480.64	479.36	1.5	NNW
9/28/20(2)	493.95	478	480.41	463.57	NS	NS	NS	537.85	471.24	468.51	525.58	565.01	NS	NS	NS	478.59	1.5	NNW
3/15-16/21 ⁽²⁾	494.5	479.93	480.78	463.1	NS	NS	NS	537.61	471.54	469.19	525.68	565.52	NS	NS	NS	479.05	1.5	NNW
5/26/21 ⁽²⁾	494.45	479.28	479.9	462.75	NS	NS	NS	537.56	471.32	467.29	526.34	565.12	NS	NS	NS	478.94	1.5	NNW
9/8/201 ⁽²⁾	494.35	479.58	480.83	464.45	NS	NS	NS	536.84	472.46	468.89	525.55	565.33	NS	NS	NS	478.9	1.5	NNW

 ⁽¹⁾ TOC elevations were resurveyed on November 14, 2019 and groundwater elevations were revised using the correct TOC elevations.
 (2) Flow rate calculated using an average hydraulic gradient between MW-14 and CCR-2 as well as MW-13 and CCR-4.

5.0 ADDITIONAL INFORMATION

5.1 ALTERNATIVE MONITORING FREQUENCY

Based on the availability of groundwater, an alternative monitoring frequency may be proposed under both the detection monitoring program and the assessment monitoring program per §§257.94(d) and 257.95(c), respectively. In lieu of semiannual sampling, sampling may be conducted less frequently but no less than annually. Choctaw Generation must obtain a certification from a qualified professional engineer stating that the demonstration for an alternative groundwater sampling and analysis frequency meets the requirements of §§257.94(d) or 257.95(c). Choctaw Generation must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer in the Annual Report. With this Annual Report, Choctaw Generation is not making an alternative monitoring frequency demonstration.

5.2 DEMONSTRATION OF INVALID STATISTICALLY SIGNIFICANT INCREASE

Within 90 days of finding that any of the Appendix III or IV constituents have been detected at a statistically significant level, Choctaw Generation may demonstrate that a source other than the CCR unit caused the contamination or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Such demonstration is allowed by both the detection monitoring program and assessment monitoring program per §257.94(e)(2) and §257.95(g)(3), respectively. Any such demonstration must be supported by a report that includes the factual or evidentiary basis for any conclusions and must be certified to be accurate by a qualified professional engineer. If a successful demonstration is made, Choctaw Generation must continue monitoring in accordance with the detection or assessment monitoring program, as applicable. Choctaw Generation must also include the demonstration in the Annual Report, as well as the certification by a qualified professional engineer. With this Annual Report, Choctaw Generation is not demonstrating that any additional constituents were detected at a SSL above the GWPS as a result from an alternate source. A history of the ASD is provided below.

Sampling to evaluate the composition of the natural soil at the site was conducted on October 29, 2019, which included drilling soil borings in three (3) locations at the Choctaw Generation site. The samples were collected at a variety of depths ranging from four (4) to twenty (20) feet to capture the natural, differing geologies in the soil and material near and within the monitored aquifer. Based on review of the analytical results, the initial ASD was developed and certified on December 17, 2019, demonstrating that elevated lithium and cobalt concentrations above each GWPS were a result of natural variation in the groundwater quality as a result of the aquifer material rather than a potential release from the CCR unit. Beryllium was then detected above the GWPS in March 2020 and then verified in the following event in May of 2020. In response, the ASD was revised and certified on August 20, 2020, demonstrating that the elevated beryllium

concentration detected above the GWPS was a result of natural variation in the groundwater quality as a result of the aquifer material rather than a potential release from the CCR unit. The initial and revised ASD were submitted with each respective annual report and can be found in the Choctaw Generation Operating Record and on the CCR Website.

It should be noted, the molybdenum exceedance was never confirmed or verified upon resampling events; therefore, molybdenum is not believed to have exceeded the GWPS. As a result of the successful revised ASD, Choctaw Generation has continued in assessment monitoring.

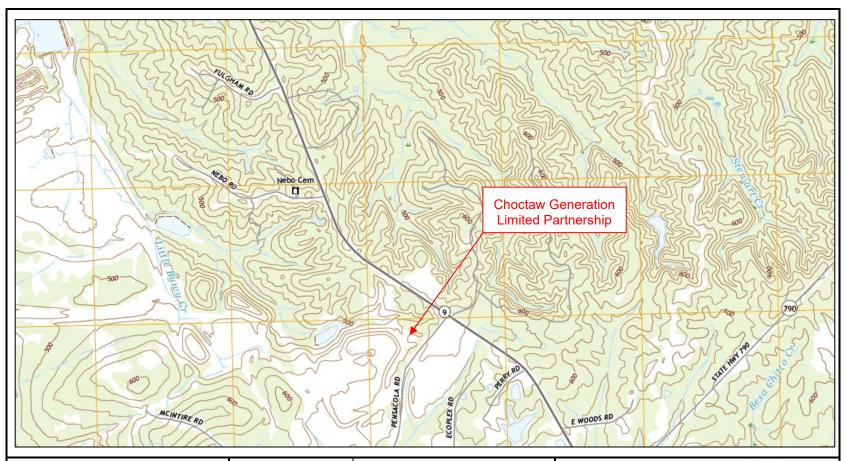
5.3 TIME EXTENSION FOR CORRECTIVE MEASURES ASSESSMENT

An assessment of corrective measures must be completed within 90 days of finding any Appendix IV constituent has been detected at a statistically significant level exceeding the GWPS. A demonstration of need for up to an additional 60 days to complete this assessment may be made as a result of site-specific conditions or circumstances. Certification from a qualified professional engineer attesting that this demonstration is accurate must be provided, and both the demonstration and certification must be included in the Annual Report. With this Annual Report, Choctaw Generation is not requesting additional time to assess corrective measures, since such assessment was not required during the period covered by the report.

6.0 CONCLUSION

6.1 SUMMARY OF KEY ACTIONS COMPLETED

During the reporting period, two semiannual assessment monitoring events were conducted, revealing continued exceedances of the GWPS for cobalt, lithium, and beryllium. These constituent exceedances are detailed in the ASD. There were no new exceedances of the GWPS; therefore, assessment monitoring was continued. Additionally, monitoring wells MW-15 and MW-17 were properly decommissioned as described in Section 3.3.


6.2 KEY ACTIVITIES FOR UPCOMING YEAR

During calendar year 2022, Choctaw Generation anticipates conducting at least two (2) semiannual monitoring events and an annual Appendix IV monitoring event in accordance with the assessment monitoring program as outlined by §257.95(g). If any constituent, other than those addressed by the revised ASD, is detected at a SSL above the GWPS, the ASD will be amended or corrective measures will be initiated to address the constituents of concern.

Page 19 of 19

FIGURE 1

SITE LOCATION MAP

Legend:

Source: USGS US Topo (12/30/2020)
 Drawn By: CBG
 Checked By: BSK

 Date: 1/17/2022
 Scale: 1:24,000

Project No.: Drawing No: N/A

Choctaw Generation Limited Partnership 2391 Pensacola Road Ackerman, Mississippi

P.O. Box 356 Sherman, Mississippi 38869

(662) 840-5945

Figure 1: Site Location Map

FIGURE 2

FACILITY DIAGRAM

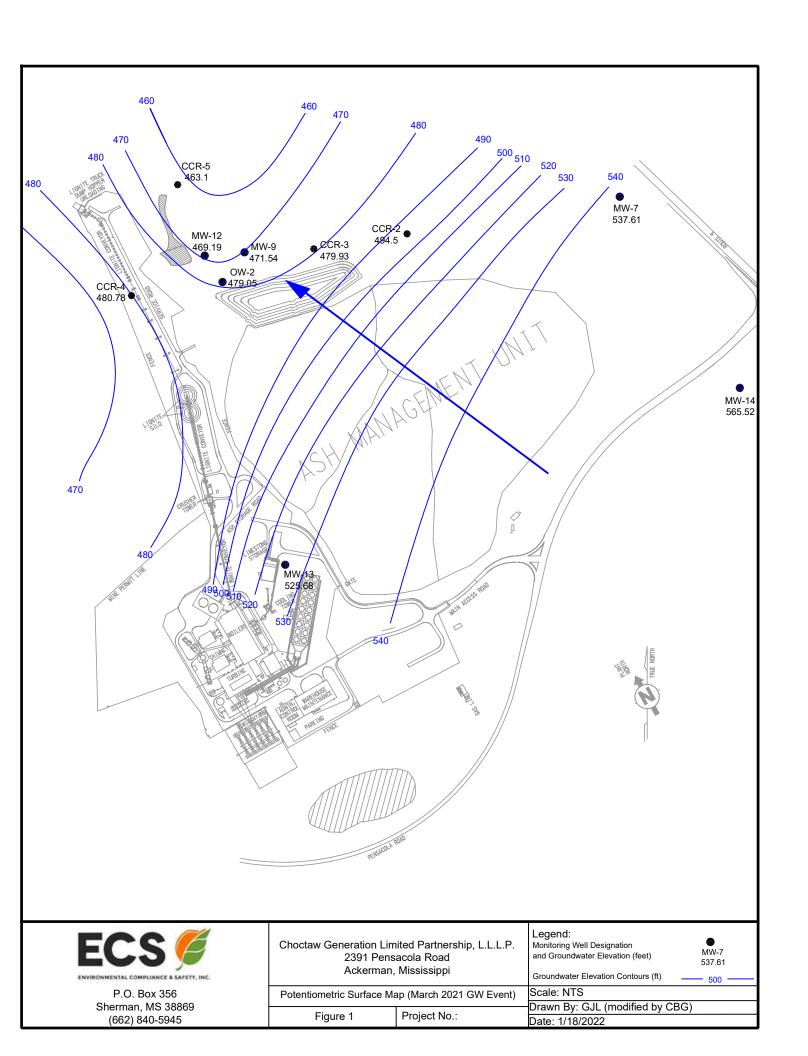
Choctaw Generation Limited Partnership, L.L.L.P. 2391 Pensacola Road Ackerman, Mississippi

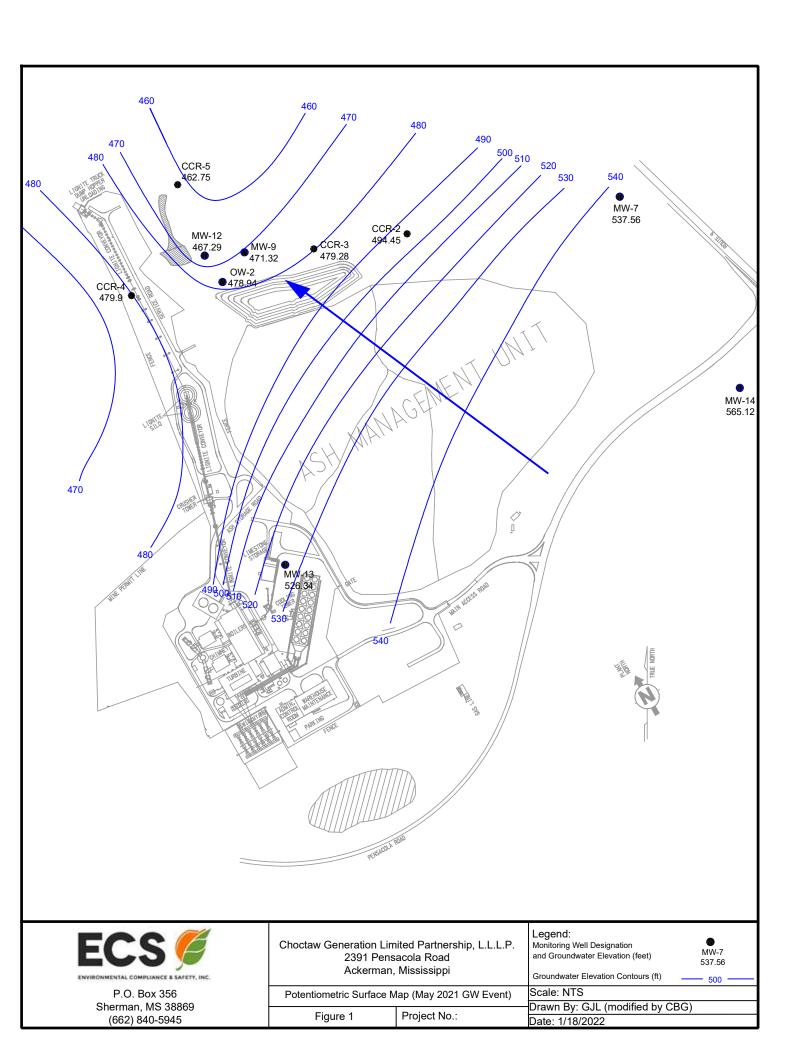
Legend:
Monitoring Well

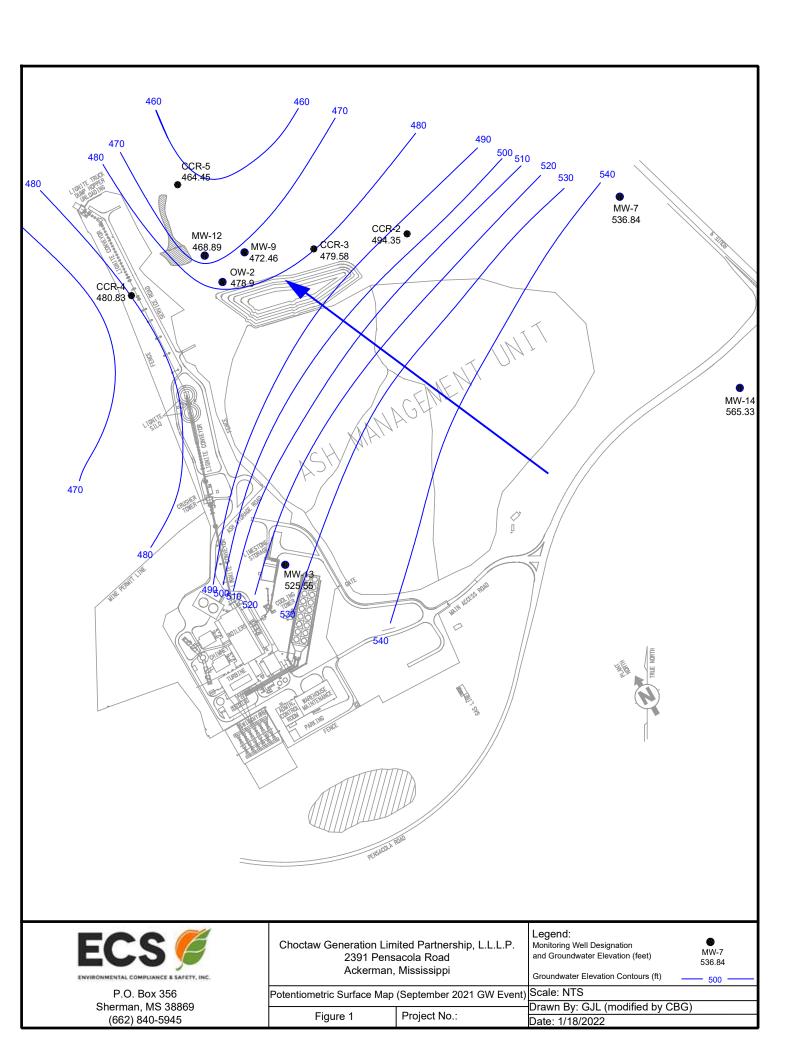
MW-14
E=593.84

Facility Diagram

Scale: Not Determined
Drawn By: JTB
Date: 8/27/2018


Project No.:


Figure 2


Revised By: CBG Date: 1/17/2022

APPENDIX A

POTENTIOMETRIC SURFACE MAPS

APPENDIX B

ANALYTICAL RESULTS AND CHAIN-OF-CUSTODY FORMS

Mailing Address: PO Box 1410 Ocean Springs, MS 39566-1410 6500 Sunplex Drive Ocean Springs, MS 39564 228.875.6420 Phone 228.875.6423 Fax

April 13, 2021

Jim Ward Work Order #: 2103321

Choctaw Generation LP 2391 Pensacola Rd.

Ackerman, MS 39735

RE: CGLP CCR

Purchase Order #:

Enclosed are Micro-Methods Laboratory, Inc. results of analyses performed on samples received 03/17/2021 10:00. If you have any questions concerning this report, please feel free to contact the office.

Sincerely,

Mitch Spicer

Lab Director *Micro-Methods Laboratory, Inc.*

DISCLAIMER

The results only relate to the items or the sample and/or samples received by the laboratory. This report shall not be reproduced except in full, without the approval of the laboratory. All NELAP certified test methods performed meet the requirements of NELAC 2009 Standards. Any variances and/or deviations specific to this analytical report are referenced in the lab report using qualifiers and detailed explanations found in the case narrative.

Choctaw Generation LP 2391 Pensacola Rd. Ackerman MS, 39735 Project: CGLP CCR
Project Number: [none]
Project Manager: Jim Ward

Reported: 04/13/2021 13:02

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID		Date/Time Sampled	Sampled by	Date/Time Received
MW-9	2103321-01	Water	03/15/2021 17:26	Kirk Shelton	03/17/2021 10:00
OW-2	2103321-02	Water	03/15/2021 16:51	Kirk Shelton	03/17/2021 10:00
MW-13	2103321-03	Water	03/16/2021 11:56	Kirk Shelton	03/17/2021 10:00
MW-7	2103321-04	Water	03/16/2021 13:40	Kirk Shelton	03/17/2021 10:00
MW-14	2103321-05	Water	03/16/2021 14:20	Kirk Shelton	03/17/2021 10:00
Field Blank	2103321-06	Water	03/16/2021 13:33	Kirk Shelton	03/17/2021 10:00
Duplicate	2103321-07	Water	03/15/2021 00:00	Kirk Shelton	03/17/2021 10:00
MW-12	2103321-08	Water	03/15/2021 16:20	Kirk Shelton	03/17/2021 10:00
CCR-2	2103321-09	Water	03/15/2021 18:05	Kirk Shelton	03/17/2021 10:00
CCR-3	2103321-10	Water	03/15/2021 18:35	Kirk Shelton	03/17/2021 10:00
CCR-4	2103321-11	Water	03/16/2021 10:43	Kirk Shelton	03/17/2021 10:00
CCR-5	2103321-12	Water	03/16/2021 09:40	Kirk Shelton	03/17/2021 10:00

COC meets acceptance criteria

 Choctaw Generation LP
 Project: CGLP CCR

 2391 Pensacola Rd.
 Project Number: [none]
 Reported:

 Ackerman MS, 39735
 Project Manager: Jim Ward
 04/13/2021 13:02

Sample Receipt Conditions

Date/Time Received: 3/17/2021 10:00:00AM Shipped by: Fed Ex

Received by: Sarah E. Tomek Submitted by: Kirk Shelton

Date/Time Logged: 3/17/2021 10:33:00AM Logged by: Sarah E. Tomek

Cooler ID: #1109 Receipt Temperature: 0.6 °C

Yes

Yes Cooler Custody Seals Present No Received on Ice but Not Frozen Containers Intact Yes No Ice, Short Trip No COC/Labels Agree Yes **Obvious Contamination** No Labels Complete Rush to meet HT Yes No COC Complete Yes Received within HT Yes Volatile Vial Headspace >6mm Proper Containers for Analysis No Yes Field Sheet/Instructions Included Correct Preservation No Yes Samples Rejected/Documented in Log No Adequate Sample for Analysis Yes Temp Taken From Temp Blank Yes Sample Custody Seals Present Yes Temp Taken From Sample Container Samples Missing from COC/Cooler No No Temp Taken From Cooler No

Choctaw Generation LP Project: CGLP CCR
2391 Pensacola Rd. Project Number: [none]
Ackerman MS, 39735 Project Manager: Jim Ward

Reported: 04/13/2021 13:02

	_		
Cooler Custody Seals Present	No	Received on Ice but Not Frozen	Yes
Containers Intact	Yes	No Ice, Short Trip	No
COC/Labels Agree	Yes	Obvious Contamination	No
Labels Complete	Yes	Rush to meet HT	No
COC Complete	Yes	Received within HT	Yes
Volatile Vial Headspace >6mm	No	Proper Containers for Analysis	Yes
Field Sheet/Instructions Included	No	Correct Preservation	Yes
Samples Rejected/Documented in Log	No	Adequate Sample for Analysis	Yes
Temp Taken From Temp Blank	Yes	Sample Custody Seals Present	Yes
Temp Taken From Sample Container	No	Samples Missing from COC/Cooler	No
Temp Taken From Cooler	No		
COC meets acceptance criteria	Yes		

Choctaw Generation LP Project: CGLP CCR
2391 Pensacola Rd. Project Number: [none]
Ackerman MS, 39735 Project Manager: Jim Ward

Reported: 04/13/2021 13:02

Cooler ID: #1122	_	Receipt Temperature: 1.3 °C	
Cooler Custody Seals Present	No	Received on Ice but Not Frozen	Yes
Containers Intact	Yes	No Ice, Short Trip	No
COC/Labels Agree	Yes	Obvious Contamination	No
Labels Complete	Yes	Rush to meet HT	No
COC Complete	Yes	Received within HT	Yes
Volatile Vial Headspace >6mm	No	Proper Containers for Analysis	Yes
Field Sheet/Instructions Included	No	Correct Preservation	Yes
Samples Rejected/Documented in Log	No	Adequate Sample for Analysis	Yes
Temp Taken From Temp Blank	Yes	Sample Custody Seals Present	Yes
Temp Taken From Sample Container	No	Samples Missing from COC/Cooler	No
Temp Taken From Cooler	No		
COC meets acceptance criteria	Yes		

Choctaw Generation LP 2391 Pensacola Rd. Ackerman MS, 39735 Project: CGLP CCR
Project Number: [none]
Project Manager: Jim Ward

Reported: 04/13/2021 13:02

CASE NARRATIVE SUMMARY

All reported results are within Micro-Methods Laboratory, Inc.defined laboratory quality control objectives unless detailed in narrative summary or identified as qualifications. NOTE: All results listed on this report are calculated on a wet weight basis (as received by the laboratory) unless otherwise noted in the analysis qualification sections.

Summary Comments:

See attached results from Sub-Contract Laboratory

Total Metals-EPA 200.7 Rev 4.4

Qualifiers:

L2 LCS and/or LCSD Recovery below acceptance limit.

Lithium 610.362 [Axial]

1C19035-BSD1

Total Metals-EPA 200.8 Rev 5.4

Qualifiers:

CC-01 CCV exceeds acceptance limits. Sampe results reported from this calibration were below the reporting limits.

Selenium [NG]

2103321-07[Duplicate], 2103321-08[MW-12], 2103321-10[CCR-3], 2103321-11[CCR-4], 2103321-12[CCR-5]

Project: CGLP CCR
Project Number: [none]
Project Manager: Jim Ward

Reported: 04/13/2021 13:02

MW-9

2103321-01 (Water)

					•					
							Date Time	Date Time		
Analyte	Result	MRL	Units	Dil	Batch	Analyst	Prepared	Analyzed	Method	Qualifiers
Classical Chemistry Parameters										
Chloride	466	10.0	mg/L	20.0	1C18040	DLW	03/17/2021 14:12	03/17/2021 14:12	SM 4110B 2011	
Sulfate as SO4	164	25.0	"	5.0	"	DLW		03/18/2021 01:21	"	
Fluoride	0.51	0.22	"	1.0	1C18044	CDV	03/18/2021 09:50	03/18/2021 14:44	SM 4500-F C 2011	
Total Dissolved Solids	1202	1	"	"	1C17048	DLW	03/17/2021 12:45	03/19/2021 00:00	SM 2540 C-2011	
Metals by EPA 200 Series Method	Is ICP-AES									
Barium 455.403 [Radial]	0.094	0.010	mg/L	1.0	1C19035	CLV	03/19/2021 08:50	03/22/2021 12:30	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	ND	0.050	"	"	"	CLV			"	
Calcium 315.887 [Radial]	61.2	0.100	"	2.0	"	CLV		03/22/2021 13:56	"	
Lithium 610.362 [Axial]	0.051	0.040	"	1.0	"	CLV		03/22/2021 12:30	"	
Metals by EPA 200 Series Method	Is ICP-MS [Analysis N	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	1C19034	ABT		03/23/2021 17:09	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	"	"	ABT			"	
Beryllium [He]	0.00594	0.00100	"	"	"	ABT			"	
Cadmium [He]	ND	0.00100	"	"	u	ABT	"		"	
Chromium [He]	ND	0.00100	"	"		ABT			"	
Cobalt [He]	0.0237	0.00100	"	"	"	ABT			"	
Lead [He]	0.00191	0.00100	"	"	u	ABT		•	"	
Molybdenum [He]	ND	0.00100	"	"	"	ABT	"		*	
Selenium [NG]	ND	0.00500	"	"	"	ABT	"	"	"	

Project: CGLP CCR
Project Number: [none]
Project Manager: Jim Ward

Reported: 04/13/2021 13:02

OW-2

2103321-02 (Water)

			21000	2: 02 (***	101)					
Analyte	Result	MRL	Units	Dil	Batch	Analyst	Date Time Prepared	Date Time Analyzed	Method	Qualifiers
Classical Chemistry Parame	eters							-		
Chloride	43.5	2.00	mg/L	4.0	1C18040	DLW	03/17/2021 14:12	03/17/2021 14:43	SM 4110B 2011	
Sulfate as SO4	118	20.0	"	"	"	DLW				
Fluoride	0.26	0.22	"	1.0	1C18044	CDV	03/18/2021 09:50	03/18/2021 14:44	SM 4500-F C 2011	
Total Dissolved Solids	347	1	"	"	1C17048	DLW	03/17/2021 12:45	03/19/2021 00:00	SM 2540 C-2011	
Metals by EPA 200 Series Me	ethods ICP-AES	3								
Barium 455.403 [Radial]	0.047	0.010	mg/L	1.0	1C19035	CLV	03/19/2021 08:50	03/22/2021 12:34	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	ND	0.050	"	"	"	CLV			"	
Calcium 315.887 [Radial]	30.8	0.050	"	"	"	CLV				
Lithium 610.362 [Axial]	ND	0.040	"	"	"	CLV			"	
Metals by EPA 200 Series Me	ethods ICP-MS	[Analysis N	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	1C19034	ABT		03/22/2021 23:18	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	"	"	ABT			"	
Beryllium [He]	ND	0.00100	"	"	"	ABT			"	
Cadmium [He]	ND	0.00100	"	"	"	ABT			"	
Chromium [He]	ND	0.00100	"	"	"	ABT			"	
Cobalt [He]	ND	0.00100	"	"	"	ABT			"	
Lead [He]	ND	0.00100	"	"	"	ABT			"	
Molybdenum [He]	ND	0.00100	"	"	"	ABT			"	
Selenium [NG]	ND	0.00500	n .	"	"	ABT			"	

Project: CGLP CCR
Project Number: [none]
Project Manager: Jim Ward

Reported: 04/13/2021 13:02

MW-13

2103321-03 (Water)

				- '						
		MDI		D::			Date Time	Date Time		
Analyte	Result	MRL	Units	Dil	Batch	Analyst	Prepared	Analyzed	Method	Qualifiers
Classical Chemistry Parame	ters									
Chloride	3.73	0.500	mg/L	1.0	1C18040	DLW	03/17/2021 14:12	03/17/2021 15:15	SM 4110B 2011	
Sulfate as SO4	5.14	5.00	"	"	"	DLW	"		"	
Fluoride	ND	0.22	"	"	1C18044	CDV	03/18/2021 09:50	03/18/2021 14:44	SM 4500-F C 2011	
Total Dissolved Solids	168	1	"	"	1C17048	DLW	03/17/2021 12:45	03/19/2021 00:00	SM 2540 C-2011	
Metals by EPA 200 Series Me	ethods ICP-AES									
Barium 455.403 [Radial]	0.161	0.010	mg/L	1.0	1C19035	CLV	03/19/2021 08:50	03/22/2021 12:37	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	ND	0.050	"	"	"	CLV			"	
Calcium 315.887 [Radial]	18.1	0.050	"	"	"	CLV			"	
Lithium 610.362 [Axial]	ND	0.040	"	"	"	CLV			"	
Metals by EPA 200 Series Me	ethods ICP-MS [Analysis N	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	1C19034	ABT	н	03/22/2021 23:24	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	"	"	ABT	"		n	
Beryllium [He]	ND	0.00100	"	"	"	ABT			"	
Cadmium [He]	ND	0.00100	"	"	n n	ABT			"	
Chromium [He]	ND	0.00100	"	"	n	ABT			"	
Cobalt [He]	ND	0.00100	"	"	"	ABT	"		"	
Lead [He]	ND	0.00100	"	"	"	ABT	"		"	
Molybdenum [He]	ND	0.00100	"	"	"	ABT			"	
Selenium [NG]	ND	0.00500	"	"	"	ABT			"	

Project: CGLP CCR
Project Number: [none]
Project Manager: Jim Ward

Reported: 04/13/2021 13:02

MW-7

2103321-04 (Water)

<u></u>			21000	21-04 (886	ater					
	- · ·	MDI		D::	D 1.1		Date Time	Date Time		
Analyte	Result	MRL	Units	Dil	Batch	Analyst	Prepared	Analyzed	Method	Qualifiers
Classical Chemistry Parame	eters									
Chloride	3.04	0.500	mg/L	1.0	1C18040	DLW	03/17/2021 14:12	03/17/2021 17:23	SM 4110B 2011	
Sulfate as SO4	36.6	10.0	"	2.0	"	DLW	"	03/17/2021 17:55	"	
Fluoride	0.23	0.22	"	1.0	1C18044	CDV	03/18/2021 09:50	03/18/2021 14:44	SM 4500-F C 2011	
Total Dissolved Solids	186	1	"	"	1C17048	DLW	03/17/2021 12:45	03/19/2021 00:00	SM 2540 C-2011	
Metals by EPA 200 Series Me	ethods ICP-AES	3								
Barium 455.403 [Radial]	0.076	0.010	mg/L	1.0	1C19035	CLV	03/19/2021 08:50	03/22/2021 12:41	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	ND	0.050	"	"	· ·	CLV		"	"	
Calcium 315.887 [Radial]	31.7	0.050	"	"	"	CLV		•	"	
Lithium 610.362 [Axial]	ND	0.040	"	"	"	CLV		"	"	
Metals by EPA 200 Series Me	ethods ICP-MS	[Analysis N	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	1C19034	ABT	"	03/22/2021 23:38	EPA 200.8 Rev 5.4	_
Arsenic [NG]	ND	0.00200	"	"	"	ABT	"		n	
Beryllium [He]	ND	0.00100	"	"	"	ABT			"	
Cadmium [He]	ND	0.00100	"	"	"	ABT			"	
Chromium [He]	ND	0.00100	"	"	"	ABT	"		"	
Cobalt [He]	ND	0.00100	u	"	"	ABT			"	
Lead [He]	ND	0.00100	"	"	"	ABT	"		"	
Molybdenum [He]	ND	0.00100	"	"	"	ABT			"	
Selenium [NG]	ND	0.00500	"	"	"	ABT	"		"	

Project: CGLP CCR
Project Number: [none]
Project Manager: Jim Ward

Reported: 04/13/2021 13:02

MW-14

2103321-05 (Water)

					· · · · ,					
Analyte	Result	MRL	Units	Dil	Batch	Analyst	Date Time Prepared	Date Time Analyzed	Method	Qualifiers
Classical Chemistry Paramete	rs									
Chloride	18.6	0.500	mg/L	1.0	1C18040	DLW	03/17/2021 14:12	03/17/2021 18:26	SM 4110B 2011	
Sulfate as SO4	10.2	5.00	"	"	"	DLW			"	
Fluoride	ND	0.22	"	"	1C18044	CDV	03/26/2021 10:22	03/26/2021 10:22	SM 4500-F C 2011	
Total Dissolved Solids	82	1	"	"	1C17048	DLW	03/17/2021 12:45	03/19/2021 00:00	SM 2540 C-2011	
Metals by EPA 200 Series Meth	nods ICP-AES									
Barium 455.403 [Radial]	0.012	0.010	mg/L	1.0	1C19035	CLV	03/19/2021 08:50	03/22/2021 12:08	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	ND	0.050	"	"	"	CLV		"	"	
Calcium 315.887 [Radial]	0.571	0.050	"	"	"	CLV			"	
Lithium 610.362 [Axial]	ND	0.040	"	"	"	CLV			"	
Metals by EPA 200 Series Meth	nods ICP-MS	[Analysis N	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	1C19034	ABT	"	03/23/2021 16:24	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	"	"	ABT			n	
Beryllium [He]	ND	0.00100	"	"	"	ABT			"	
Cadmium [He]	ND	0.00100	"	"	"	ABT			"	
Chromium [He]	ND	0.00100	"			ABT			"	
Cobalt [He]	ND	0.00100	u .	"	"	ABT			"	
Lead [He]	ND	0.00100	u .	"	"	ABT			"	
Molybdenum [He]	ND	0.00100	"	"	n	ABT			"	
Selenium [NG]	ND	0.00500	"	"	"	ABT			"	

Project: CGLP CCR
Project Number: [none]
Project Manager: Jim Ward

Reported: 04/13/2021 13:02

Field Blank

2103321-06 (Water)

				(,					
							Date Time	Date Time		
Analyte	Result	MRL	Units	Dil	Batch	Analyst	Prepared	Analyzed	Method	Qualifiers
Classical Chemistry Parameter	rs									
Chloride	2.01	0.500	mg/L	1.0	1C18040	DLW	03/17/2021 14:12	03/17/2021 18:58	SM 4110B 2011	
Sulfate as SO4	ND	5.00	"	"	II .	DLW		"	"	
Fluoride	ND	0.22	"	"	1C18044	CDV	03/18/2021 09:50	03/18/2021 14:44	SM 4500-F C 2011	
Total Dissolved Solids	31	1	"	"	1C17048	DLW	03/17/2021 12:45	03/19/2021 00:00	SM 2540 C-2011	
Metals by EPA 200 Series Meth	ods ICP-AES	}								
Barium 455.403 [Radial]	ND	0.010	mg/L	1.0	1C19035	CLV	03/19/2021 08:50	03/22/2021 12:45	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	ND	0.050	"	"	"	CLV				
Calcium 315.887 [Radial]	2.31	0.050	"	"	"	CLV		"	"	
Lithium 610.362 [Axial]	ND	0.040	"	"	n n	CLV		"	"	
Metals by EPA 200 Series Meth	nods ICP-MS	[Analysis N	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	1C19034	ABT	"	03/22/2021 23:44	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	"	II .	ABT		"	"	
Beryllium [He]	ND	0.00100	"	"	"	ABT			"	
Cadmium [He]	ND	0.00100	"	"	"	ABT				
Chromium [He]	ND	0.00100	"	"	"	ABT			"	
Cobalt [He]	ND	0.00100	"	"	"	ABT			"	
Lead [He]	ND	0.00100	"	"	"	ABT			"	
Molybdenum [He]	ND	0.00100	"	"	"	ABT		"	"	
Selenium [NG]	ND	0.00500	"	"	"	ABT		"	"	

Project: CGLP CCR
Project Number: [none]
Project Manager: Jim Ward

Reported: 04/13/2021 13:02

Duplicate

2103321-07 (Water)

				-1-07 (111	,					
Analyte	Result	MRL	Units	Dil	Batch	Analyst	Date Time Prepared	Date Time Analyzed	Method	Qualifiers
Classical Chemistry Parame		1411.12			Datoil	, iliaiyot		,	Wichiod	Guainiois
Chloride	19.5	0.500	mg/L	1.0	1C18040	DLW	03/17/2021 14:12	03/17/2021 20:34	SM 4110B 2011	
Sulfate as SO4	7.90	5.00	u u	"	"	DLW	"	"		
Fluoride	ND	0.22	"	"	1C18044	CDV	03/26/2021 10:22	03/26/2021 10:22	SM 4500-F C 2011	
Total Dissolved Solids	86	1	"	"	1C17048	DLW	03/17/2021 12:45	03/19/2021 00:00	SM 2540 C-2011	
Metals by EPA 200 Series Me	ethods ICP-AES	}								
Barium 455.403 [Radial]	0.013	0.010	mg/L	1.0	1C19035	CLV	03/19/2021 08:50	03/22/2021 12:48	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	ND	0.050	"	"	"	CLV		"	"	
Calcium 315.887 [Radial]	0.608	0.050	"	"	"	CLV			"	
Lithium 610.362 [Axial]	ND	0.040	"	"	"	CLV			"	
Metals by EPA 200 Series Me	ethods ICP-MS	[Analysis N	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	1C19034	ABT	"	03/23/2021 00:17	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	"	"	ABT			"	
Beryllium [He]	ND	0.00100	"	"	"	ABT			•	
Cadmium [He]	ND	0.00100	"	"	"	ABT			"	
Chromium [He]	ND	0.00100	"			ABT			"	
Cobalt [He]	ND	0.00100	"	"	"	ABT			"	
Lead [He]	ND	0.00100	"			ABT			"	
Molybdenum [He]	ND	0.00100	"			ABT				
Selenium [NG]	ND	0.00500	"	"	"	ABT			"	CC-01

Project: CGLP CCR
Project Number: [none]
Project Manager: Jim Ward

Reported: 04/13/2021 13:02

MW-12

2103321-08 (Water)

				2 . 00 (***	,					
A1.4-	Result	MRL	Units	Dil	Batch	Analyst	Date Time Prepared	Date Time Analyzed	Method	Qualifiers
Analyte		IVINL	Ullis	III	Datcii	Allalyst	Тторатса	7 thatyzou	Metriod	Qualifiers
Classical Chemistry Parame	eters									
Chloride	56.4	2.00	mg/L	4.0	1C18040	DLW	03/17/2021 14:12	03/18/2021 11:36	SM 4110B 2011	
Sulfate as SO4	79.6	20.0	"	"	"	DLW		"	"	
Fluoride	ND	0.22	"	1.0	1C18044	CDV	03/18/2021 09:50	03/18/2021 14:44	SM 4500-F C 2011	
Total Dissolved Solids	285	1	"	"	1C17048	DLW	03/17/2021 12:45	03/19/2021 00:00	SM 2540 C-2011	
Metals by EPA 200 Series M	ethods ICP-AES									
Barium 455.403 [Radial]	0.233	0.010	mg/L	1.0	1C19035	CLV	03/19/2021 08:50	03/22/2021 12:59	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	ND	0.050	"	"	"	CLV			"	
Calcium 315.887 [Radial]	29.4	0.050	"	"	"	CLV			"	
Lithium 610.362 [Axial]	ND	0.040	"	"	"	CLV		"	•	
Metals by EPA 200 Series M	ethods ICP-MS [Analysis N	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	1C19034	ABT	"	03/23/2021 00:23	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	"	"	ABT			"	
Beryllium [He]	ND	0.00100	"	"	n n	ABT			"	
Cadmium [He]	ND	0.00100	"	"	"	ABT			"	
Chromium [He]	ND	0.00100	"	"	"	ABT			"	
Cobalt [He]	0.00929	0.00100	"	"	"	ABT			"	
Lead [He]	ND	0.00100	"	"	"	ABT			"	
Molybdenum [He]	ND	0.00100	"	"	"	ABT			"	
Selenium [NG]	ND	0.00500	"	"	"	ABT			"	CC-01

Project: CGLP CCR
Project Number: [none]
Project Manager: Jim Ward

Reported: 04/13/2021 13:02

CCR-2

2103321-09 (Water)

					,					
Analyte	Result	MRL	Units	Dil	Batch	Analyst	Date Time Prepared	Date Time Analyzed	Method	Qualifiers
Classical Chemistry Paramet	ters									
Chloride	8.29	0.500	mg/L	1.0	1C18040	DLW	03/17/2021 14:12	03/17/2021 22:10	SM 4110B 2011	
Sulfate as SO4	15.5	5.00	"	"	"	DLW				
Fluoride	ND	0.22	"	"	1C18044	CDV	03/18/2021 09:50	03/18/2021 14:44	SM 4500-F C 2011	
Total Dissolved Solids	143	1	"	"	1C17048	DLW	03/17/2021 12:45	03/19/2021 00:00	SM 2540 C-2011	
Metals by EPA 200 Series Me	thods ICP-AES	3								
Barium 455.403 [Radial]	0.110	0.010	mg/L	1.0	1C19035	CLV	03/19/2021 08:50	03/22/2021 12:19	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	ND	0.050	"	"	"	CLV			"	
Calcium 315.887 [Radial]	13.8	0.050	"	"	"	CLV				
Lithium 610.362 [Axial]	ND	0.040	"	"	"	CLV			"	
Metals by EPA 200 Series Me	thods ICP-MS	[Analysis N	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	1C19034	ABT	"	03/23/2021 16:50	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	"	"	ABT			"	
Beryllium [He]	ND	0.00100	"	"	"	ABT			"	
Cadmium [He]	ND	0.00100	"	"	"	ABT			"	
Chromium [He]	ND	0.00100	"	"	"	ABT			n .	
Cobalt [He]	ND	0.00100	"	"		ABT			"	
Lead [He]	ND	0.00100	"	"	"	ABT			"	
Molybdenum [He]	ND	0.00100	"	"	"	ABT			"	
Selenium [NG]	ND	0.00500	"	"		ABT			m .	

Project: CGLP CCR
Project Number: [none]
Project Manager: Jim Ward

Reported: 04/13/2021 13:02

CCR-3

2103321-10 (Water)

				(,					
							Date Time	Date Time		
Analyte	Result	MRL	Units	Dil	Batch	Analyst	Prepared	Analyzed	Method	Qualifiers
Classical Chemistry Parame	ters									
Chloride	4.53	0.500	mg/L	1.0	1C18040	DLW	03/17/2021 14:12	03/17/2021 22:42	SM 4110B 2011	
Sulfate as SO4	261	50.0	"	10.0	"	DLW		03/18/2021 12:48	"	
Fluoride	ND	0.22	"	1.0	1C18044	CDV	03/18/2021 09:50	03/18/2021 14:44	SM 4500-F C 2011	
Total Dissolved Solids	465	1	"	"	1C17048	DLW	03/17/2021 12:45	03/19/2021 00:00	SM 2540 C-2011	
Metals by EPA 200 Series Me	ethods ICP-AES									
Barium 455.403 [Radial]	0.084	0.010	mg/L	1.0	1C19035	CLV	03/19/2021 08:50	03/22/2021 13:03	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	ND	0.050	"	"	"	CLV			"	
Calcium 315.887 [Radial]	39.9	0.050	"	"	"	CLV		•	"	
Lithium 610.362 [Axial]	0.072	0.040	"	"	"	CLV			"	
Metals by EPA 200 Series Me	ethods ICP-MS [Analysis N	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	1C19034	ABT		03/23/2021 00:37	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	"	"	ABT		"	"	
Beryllium [He]	ND	0.00100	"	"	"	ABT			•	
Cadmium [He]	ND	0.00100	"	u	"	ABT				
Chromium [He]	ND	0.00100	"	"	"	ABT			"	
Cobalt [He]	0.0138	0.00100	"	"	"	ABT			"	
Lead [He]	ND	0.00100	"	"	"	ABT				
Molybdenum [He]	ND	0.00100	"	"	"	ABT				
Selenium [NG]	ND	0.00500	"	"	"	ABT			n .	CC-01

Project: CGLP CCR
Project Number: [none]
Project Manager: Jim Ward

Reported: 04/13/2021 13:02

CCR-4

2103321-11 (Water)

			21000	21-11 (446	ater,					
Analyte	Result	MRL	Units	Dil	Batch	Analyst	Date Time Prepared	Date Time Analyzed	Method	Qualifiers
Analyte		IVIKL	Units	DII	Batch	Analyst	Fiepaieu	Allalyzeu	Method	Qualifiers
Classical Chemistry Parame	eters									
Chloride	7.73	0.500	mg/L	1.0	1C18040	DLW	03/17/2021 14:12	03/17/2021 23:45	SM 4110B 2011	
Sulfate as SO4	31.5	10.0	"	2.0	"	DLW		03/18/2021 13:20	"	
Fluoride	ND	0.22	"	1.0	1C18044	CDV	03/18/2021 09:50	03/18/2021 14:44	SM 4500-F C 2011	
Total Dissolved Solids	208	1	"	"	1C17048	DLW	03/17/2021 12:45	03/19/2021 00:00	SM 2540 C-2011	
Metals by EPA 200 Series M	ethods ICP-AES									
Barium 455.403 [Radial]	0.170	0.010	mg/L	1.0	1C19035	CLV	03/19/2021 08:50	03/22/2021 13:07	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	ND	0.050	"	"	"	CLV			n	
Calcium 315.887 [Radial]	25.3	0.050	"	"	"	CLV		"	"	
Lithium 610.362 [Axial]	ND	0.040	"	"	"	CLV			n	
Metals by EPA 200 Series M	ethods ICP-MS [Analysis N	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	1C19034	ABT	"	03/23/2021 00:43	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	"	"	ABT			"	
Beryllium [He]	ND	0.00100	"	"	"	ABT		"	"	
Cadmium [He]	ND	0.00100	"	"	"	ABT			"	
Chromium [He]	ND	0.00100	"	"	n	ABT			"	
Cobalt [He]	0.00430	0.00100	"	"	"	ABT			"	
Lead [He]	ND	0.00100	"	"	"	ABT			m m	
Molybdenum [He]	ND	0.00100	"	"	"	ABT			"	
Selenium [NG]	ND	0.00500	"	"	"	ABT			"	CC-01

Project: CGLP CCR
Project Number: [none]
Project Manager: Jim Ward

Reported: 04/13/2021 13:02

CCR-5

2103321-12 (Water)

				21-12 (***						
							Date Time	Date Time		
Analyte	Result	MRL	Units	Dil	Batch	Analyst	Prepared	Analyzed	Method	Qualifiers
Classical Chemistry Parameter	rs									
Chloride	6.87	0.500	mg/L	1.0	1C18040	DLW	03/17/2021 14:12	03/18/2021 00:17	SM 4110B 2011	
Sulfate as SO4	1290	250	"	50.0	"	DLW		03/18/2021 00:49	"	
Fluoride	ND	0.22	"	1.0	1C18044	CDV	03/18/2021 09:50	03/18/2021 14:44	SM 4500-F C 2011	
Total Dissolved Solids	1362	2	"	"	1C17048	DLW	03/17/2021 12:45	03/19/2021 00:00	SM 2540 C-2011	
Metals by EPA 200 Series Meth	ods ICP-AES									
Barium 455.403 [Radial]	0.038	0.010	mg/L	1.0	1C19035	CLV	03/19/2021 08:50	03/22/2021 13:10	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	0.089	0.050	"	"	"	CLV		"	"	
Calcium 315.887 [Radial]	161	0.250	"	5.0	"	CLV		03/22/2021 14:00	"	
Lithium 610.362 [Axial]	0.097	0.040	"	1.0	"	CLV		03/22/2021 13:10	n	
Metals by EPA 200 Series Meth	ods ICP-MS [Analysis N	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	1C19034	ABT		03/23/2021 00:50	EPA 200.8 Rev 5.4	
Arsenic [NG]	0.00316	0.00200	"	"	"	ABT			"	
Beryllium [He]	ND	0.00100	"	"	"	ABT			"	
Cadmium [He]	ND	0.00100	"	"	"	ABT				
Chromium [He]	ND	0.00100	"	"	"	ABT			"	
Cobalt [He]	0.0299	0.00100	"	"	"	ABT			"	
Lead [He]	ND	0.00100	"	"	"	ABT			•	
Molybdenum [He]	ND	0.00100	"	"	"	ABT			"	
Selenium [NG]	ND	0.00500	"	"	"	ABT			"	CC-01

Project: CGLP CCR
Project Number: [none]
Project Manager: Jim Ward

Reported: 04/13/2021 13:02

Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Batch 1C17048 - Default Prep Ger	nChem										
Blank (1C17048-BLK1)											
Total Dissolved Solids	3/19/21 0:00	ND	1	mg/L							
LCS (1C17048-BS1)											
Total Dissolved Solids	3/19/21 0:00	125	1	mg/L	150		83.3	65-105			
LCS Dup (1C17048-BSD1)											
Total Dissolved Solids	3/19/21 0:00	122	1	mg/L	150		81.3	65-105	2.43	15	
Duplicate (1C17048-DUP1)			Source: 21033	16-01							
Total Dissolved Solids	3/19/21 0:00	309	1	mg/L		313			1.29	10	
Duplicate (1C17048-DUP2)			Source: 21033	21-09							
Total Dissolved Solids	3/19/21 0:00	140	1	mg/L		143			2.12	10	
Batch 1C18040 - Default Prep Ger	nChem										
Blank (1C18040-BLK1)											
Chloride	3/18/21 1:53	ND	0.500	mg/L							
Sulfate as SO4	3/18/21 1:53	ND	5.00								
Blank (1C18040-BLK2)											
Chloride	3/18/21 8:42	ND	0.500	mg/L							
Sulfate as SO4	3/18/21 8:42	ND	5.00								
LCS (1C18040-BS1)											
Chloride	3/18/21 2:57	9.81	0.500	mg/L	10.0		98.1	86.3-109			
Sulfate as SO4	3/18/21 2:57	9.62	5.00	•	10.0		96.2	88-108			

Project: CGLP CCR
Project Number: [none]
Project Manager: Jim Ward

Reported: 04/13/2021 13:02

Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Batch 1C18040 - Default Prep Ge	nChem										
LCS (1C18040-BS2)											
Chloride	3/18/21 9:46	2.89	0.500	mg/L	3.00		96.5	86.3-109			
Sulfate as SO4	3/18/21 9:46	14.3	5.00		15.0		95.4	88-108			
LCS Dup (1C18040-BSD1)											
Chloride	3/18/21 3:29	9.77	0.500	mg/L	10.0		97.7	86.3-109	0.388	20	
Sulfate as SO4	3/18/21 3:29	9.64	5.00		10.0		96.4	88-108	0.239	20	
LCS Dup (1C18040-BSD2)											
Chloride	3/18/21 10:18	2.92	0.500	mg/L	3.00		97.2	86.3-109	0.792	20	
Sulfate as SO4	3/18/21 10:18	14.4	5.00		15.0		96.1	88-108	0.738	20	
Duplicate (1C18040-DUP1)			Source: 21033	321-03							
Chloride	3/17/21 15:47	3.72	0.500	mg/L		3.73			0.242	20	
Sulfate as SO4	3/17/21 15:47	5.08	5.00			5.14			1.31	20	
Matrix Spike (1C18040-MS1)			Source: 21033	321-03							
Chloride	3/17/21 16:19	24.2	0.500	mg/L	20.0	3.73	102	76.2-122			
Sulfate as SO4	3/17/21 16:19	25.6	5.00		20.0	5.14	103	74.1-129			
Matrix Spike Dup (1C18040-MSD	1)		Source: 21033	321-03							
Chloride	3/17/21 16:51	24.2	0.500	mg/L	20.0	3.73	102	76.2-122	0.0207	20	
Sulfate as SO4	3/17/21 16:51	25.7	5.00		20.0	5.14	103	74.1-129	0.0195	20	
Batch 1C18044 - Default Prep Ge	nChem										
Blank (1C18044-BLK1)											
Fluoride	3/18/21 14:44	ND	0.22	mg/L							

Project: CGLP CCR
Project Number: [none]
Project Manager: Jim Ward

Reported: 04/13/2021 13:02

Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Batch 1C18044 - Default Prep GenChe	em										
Blank (1C18044-BLK2)											
Fluoride	3/26/21 10:22	ND	0.22	mg/L							
LCS (1C18044-BS1)											
Fluoride	3/18/21 14:44	2.03	0.22	mg/L	2.00		102	83.3-107			
LCS (1C18044-BS2)											
Fluoride	3/26/21 10:22	2.04	0.22	mg/L	2.00		102	83.3-107			
LCS Dup (1C18044-BSD1)											
Fluoride	3/18/21 14:44	2.02	0.22	mg/L	2.00		101	83.3-107	0.494	30	
LCS Dup (1C18044-BSD2)											
Fluoride	3/26/21 10:22	2.05	0.22	mg/L	2.00		103	83.3-107	0.489	30	
Duplicate (1C18044-DUP1)			Source: 21033	21-04							
Fluoride	3/18/21 14:44	0.23	0.22	mg/L		0.23			2.63	20	
Duplicate (1C18044-DUP2)			Source: 21033	21-07							
Fluoride	3/26/21 10:22	ND	0.22	mg/L		ND				20	
Matrix Spike (1C18044-MS1)			Source: 21033	21-04							
Fluoride	3/18/21 14:44	1.22	0.22	mg/L	1.00	0.23	99.5	79.3-113			
Matrix Spike (1C18044-MS2)			Source: 21033	21-05							
Fluoride	3/26/21 10:22	1.00	0.22	mg/L	1.00	ND	99.6	79.3-113			
Matrix Spike Dup (1C18044-MSD1)			Source: 21033	21-04							
Fluoride	3/18/21 14:44	1.25	0.22	mg/L	1.00	0.23	103	79.3-113	2.43	30	

Project: CGLP CCR
Project Number: [none]
Project Manager: Jim Ward

Reported: 04/13/2021 13:02

Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Batch 1C18044 - Default Pr	ep GenChem										
Matrix Spike Dup (1C18044	-MSD2)		Source: 21033	21-05							
Fluoride	3/26/21 10:22	1.02	0.22	mg/L	1.00	ND	102	79.3-113	2.38	30	

Project: CGLP CCR
Project Number: [none]
Project Manager: Jim Ward

Reported: 04/13/2021 13:02

Metals by EPA 200 Series Methods ICP-AES - Quality Control

Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Batch 1C19035 - EPA 200.2 DCN 1	017 Rev 9										
Blank (1C19035-BLK1)											
Barium 455.403 [Radial]	3/22/21 11:18	ND	0.010	mg/L							
Boron 249.773 [Radial]	3/22/21 11:18	ND	0.050	"							
Calcium 315.887 [Radial]	3/22/21 11:18	ND	0.050	"							
Lithium 610.362 [Axial]	3/22/21 11:18	ND	0.040	*							
LCS (1C19035-BS1)											
Barium 455.403 [Radial]	3/22/21 11:32	0.217	0.010	mg/L	0.200		108	85-115			
Boron 249.773 [Radial]	3/22/21 11:32	0.210	0.050		0.200		105	85-115			
Calcium 315.887 [Radial]	3/22/21 11:32	0.200	0.050		0.200		100	85-115			
Lithium 610.362 [Axial]	3/22/21 15:35	0.176	0.040		0.200		87.9	85-115			
LCS Dup (1C19035-BSD1)											
Barium 455.403 [Radial]	3/22/21 11:35	0.214	0.010	mg/L	0.200		107	85-115	1.08	20	
Boron 249.773 [Radial]	3/22/21 11:35	0.210	0.050		0.200		105	85-115	0.102	20	
Calcium 315.887 [Radial]	3/22/21 11:35	0.205	0.050		0.200		102	85-115	1.99	20	
Lithium 610.362 [Axial]	3/22/21 15:39	0.169	0.040	"	0.200		84.4	85-115	4.01	20	L2
Duplicate (1C19035-DUP1)			Source: 21033	321-09							
Calcium 315.887 [Radial]	3/22/21 12:26	13.9	0.050	mg/L		13.8			0.769	20	
Matrix Spike (1C19035-MS1)			Source: 21033	321-05							
Barium 455.403 [Radial]	3/22/21 12:12	0.218	0.010	mg/L	0.200	0.012	103	70-130			
Boron 249.773 [Radial]	3/22/21 12:12	0.206	0.050		0.200	ND	103	70-130			
Calcium 315.887 [Radial]	3/22/21 12:12	0.768	0.050		0.200	0.571	98.2	70-130			
Lithium 610.362 [Axial]	3/22/21 12:12	0.196	0.040	"	0.200	ND	97.9	70-130			
Matrix Spike (1C19035-MS2)			Source: 21033	321-09							
Barium 455.403 [Radial]	3/22/21 12:23	0.348	0.010	mg/L	0.200	0.110	119	70-130			
Boron 249.773 [Radial]	3/22/21 12:23	0.250	0.050		0.200	0.019	116	70-130			
Lithium 610.362 [Axial]	3/22/21 12:23	0.189	0.040		0.200	ND	94.4	70-130			

Project: CGLP CCR
Project Number: [none]
Project Manager: Jim Ward

Reported: 04/13/2021 13:02

Metals by EPA 200 Series Methods ICP-AES - Quality Control

Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Batch 1C19035 - EPA 200.2 DCN	1017 Rev 9										
Matrix Spike Dup (1C19035-MSD1	1)		Source: 21033	21-05							
Barium 455.403 [Radial]	3/22/21 12:15	0.223	0.010	mg/L	0.200	0.012	105	70-130	2.38	20	
Boron 249.773 [Radial]	3/22/21 12:15	0.207	0.050		0.200	ND	103	70-130	0.393	20	
Calcium 315.887 [Radial]	3/22/21 12:15	0.788	0.050		0.200	0.571	108	70-130	2.58	20	
Lithium 610.362 [Axial]	3/22/21 12:15	0.194	0.040		0.200	ND	97.0	70-130	0.925	20	
Matrix Spike Dup (1C19035-MSD2	2)		Source: 21033	21-09							
Barium 455.403 [Radial]	3/22/21 12:26	0.324	0.010	mg/L	0.200	0.110	107	70-130	7.28	20	
Boron 249.773 [Radial]	3/22/21 12:26	0.228	0.050		0.200	0.019	105	70-130	9.03	20	
Lithium 610.362 [Axial]	3/22/21 12:26	0.189	0.040		0.200	ND	94.7	70-130	0.354	20	

Project: CGLP CCR
Project Number: [none]
Project Manager: Jim Ward

Reported: 04/13/2021 13:02

Metals by EPA 200 Series Methods ICP-MS [Analysis Mode] - Quality Control

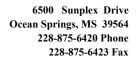
Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Batch 1C19034 - EPA 200.2 DCN	I 1017 Rev 9										
Blank (1C19034-BLK1)											
Antimony [He]	3/22/21 17:29	ND	0.00200	mg/L							
Arsenic [NG]	3/22/21 17:29	ND	0.00200								
Beryllium [He]	3/22/21 17:29	ND	0.00100								
Cadmium [He]	3/22/21 17:29	ND	0.00100								
Chromium [He]	3/22/21 17:29	ND	0.00100								
Cobalt [He]	3/22/21 17:29	ND	0.00100								
Lead [He]	3/22/21 17:29	ND	0.00100								
Molybdenum [He]	3/22/21 17:29	ND	0.00100								
Selenium [NG]	3/22/21 17:29	ND	0.00500								
Thallium [He]	3/22/21 17:29	ND	0.00500								
LCS (1C19034-BS1)											
Antimony [He]	3/22/21 17:35	0.109	0.00200	mg/L	0.100		109	85-115			
Arsenic [NG]	3/22/21 17:35	0.098	0.00200		0.100		98.0	85-115			
Beryllium [He]	3/22/21 17:35	0.104	0.00100		0.100		104	85-115			
Cadmium [He]	3/22/21 17:35	0.098	0.00100		0.100		98.5	85-115			
Chromium [He]	3/22/21 17:35	0.106	0.00100		0.100		106	85-115			
Cobalt [He]	3/22/21 17:35	0.105	0.00100		0.100		105	85-115			
Lead [He]	3/22/21 17:35	0.098	0.00100		0.100		97.9	85-115			
Molybdenum [He]	3/22/21 17:35	0.102	0.00100		0.100		102	85-115			
Selenium [NG]	3/22/21 17:35	0.101	0.00500		0.100		101	85-115			
Thallium [He]	3/22/21 17:35	0.102	0.00500		0.100		102	85-115			
LCS Dup (1C19034-BSD1)											
Antimony [He]	3/22/21 17:42	0.108	0.00200	mg/L	0.100		108	85-115	1.64	20	
Arsenic [NG]	3/22/21 17:42	0.099	0.00200		0.100		98.7	85-115	0.708	20	
Beryllium [He]	3/22/21 17:42	0.106	0.00100		0.100		106	85-115	1.86	20	
Cadmium [He]	3/22/21 17:42	0.098	0.00100		0.100		98.0	85-115	0.474	20	
Chromium [He]	3/22/21 17:42	0.104	0.00100		0.100		104	85-115	1.59	20	
Cobalt [He]	3/22/21 17:42	0.103	0.00100		0.100		103	85-115	2.01	20	
Lead [He]	3/22/21 17:42	0.096	0.00100		0.100		96.4	85-115	1.56	20	
Molybdenum [He]	3/22/21 17:42	0.102	0.00100		0.100		102	85-115	0.272	20	
Selenium [NG]	3/22/21 17:42	0.102	0.00500		0.100		102	85-115	1.06	20	
Thallium [He]	3/22/21 17:42	0.103	0.00500		0.100		103	85-115	0.575	20	

Project: CGLP CCR
Project Number: [none]
Project Manager: Jim Ward

Reported: 04/13/2021 13:02

Metals by EPA 200 Series Methods ICP-MS [Analysis Mode] - Quality Control

Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Batch 1C19034 - EPA 200.2 DCN	1017 Rev 9										
Matrix Spike (1C19034-MS1)			Source: 21033	21-05							
Antimony [He]	3/23/21 16:30	0.110	0.00200	mg/L	0.100	ND	110	70-130			
Arsenic [NG]	3/23/21 16:30	0.102	0.00200		0.100	ND	102	70-130			
Beryllium [He]	3/23/21 16:30	0.116	0.00100		0.100	ND	116	70-130			
Cadmium [He]	3/23/21 16:30	0.101	0.00100		0.100	ND	101	70-130			
Chromium [He]	3/23/21 16:30	0.103	0.00100		0.100	ND	103	70-130			
Cobalt [He]	3/23/21 16:30	0.103	0.00100		0.100	0.0006	102	70-130			
Lead [He]	3/23/21 16:30	0.100	0.00100		0.100	ND	99.9	70-130			
Molybdenum [He]	3/23/21 16:30	0.106	0.00100		0.100	0.0002	106	70-130			
Selenium [NG]	3/23/21 16:30	0.100	0.00500		0.100	ND	100	70-130			
Thallium [He]	3/23/21 16:30	0.104	0.00500		0.100	ND	104	70-130			
Matrix Spike (1C19034-MS2)			Source: 21033	21-09							
Antimony [He]	3/23/21 16:56	0.110	0.00200	mg/L	0.100	ND	110	70-130			
Arsenic [NG]	3/23/21 16:56	0.104	0.00200		0.100	ND	104	70-130			
Beryllium [He]	3/23/21 16:56	0.111	0.00100		0.100	ND	111	70-130			
Cadmium [He]	3/23/21 16:56	0.100	0.00100		0.100	ND	100	70-130			
Chromium [He]	3/23/21 16:56	0.103	0.00100		0.100	ND	103	70-130			
Cobalt [He]	3/23/21 16:56	0.101	0.00100		0.100	ND	101	70-130			
Lead [He]	3/23/21 16:56	0.099	0.00100		0.100	ND	99.2	70-130			
Molybdenum [He]	3/23/21 16:56	0.106	0.00100		0.100	0.0002	106	70-130			
Selenium [NG]	3/23/21 16:56	0.103	0.00500		0.100	ND	103	70-130			
Thallium [He]	3/23/21 16:56	0.105	0.00500		0.100	ND	105	70-130			
Matrix Spike Dup (1C19034-MSD	1)		Source: 21033	21-05							
Antimony [He]	3/23/21 16:37	0.111	0.00200	mg/L	0.100	ND	111	70-130	0.534	20	
Arsenic [NG]	3/23/21 16:37	0.101	0.00200		0.100	ND	101	70-130	1.96	20	
Beryllium [He]	3/23/21 16:37	0.113	0.00100		0.100	ND	113	70-130	2.59	20	
Cadmium [He]	3/23/21 16:37	0.102	0.00100		0.100	ND	102	70-130	0.747	20	
Chromium [He]	3/23/21 16:37	0.104	0.00100		0.100	ND	104	70-130	1.14	20	
Cobalt [He]	3/23/21 16:37	0.103	0.00100		0.100	0.0006	103	70-130	0.386	20	
Lead [He]	3/23/21 16:37	0.101	0.00100		0.100	ND	101	70-130	1.33	20	
Molybdenum [He]	3/23/21 16:37	0.107	0.00100		0.100	0.0002	106	70-130	0.762	20	
Selenium [NG]	3/23/21 16:37	0.099	0.00500		0.100	ND	98.7	70-130	1.24	20	
Thallium [He]	3/23/21 16:37	0.106	0.00500		0.100	ND	106	70-130	1.88	20	



Project: CGLP CCR
Project Number: [none]
Project Manager: Jim Ward

Reported: 04/13/2021 13:02

Metals by EPA 200 Series Methods ICP-MS [Analysis Mode] - Quality Control

Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers				
Batch 1C19034 - EPA 200.2 DC	atch 1C19034 - EPA 200.2 DCN 1017 Rev 9														
Matrix Spike Dup (1C19034-MS	D2)		Source: 21033	21-09											
Antimony [He]	3/23/21 17:03	0.111	0.00200	mg/L	0.100	ND	111	70-130	0.443	20					
Arsenic [NG]	3/23/21 17:03	0.107	0.00200		0.100	ND	107	70-130	3.13	20					
Beryllium [He]	3/23/21 17:03	0.113	0.00100		0.100	ND	113	70-130	1.60	20					
Cadmium [He]	3/23/21 17:03	0.101	0.00100		0.100	ND	101	70-130	0.843	20					
Chromium [He]	3/23/21 17:03	0.104	0.00100		0.100	ND	104	70-130	0.255	20					
Cobalt [He]	3/23/21 17:03	0.102	0.00100		0.100	ND	102	70-130	0.947	20					
Lead [He]	3/23/21 17:03	0.101	0.00100		0.100	ND	101	70-130	1.77	20					
Molybdenum [He]	3/23/21 17:03	0.108	0.00100		0.100	0.0002	107	70-130	1.09	20					
Selenium [NG]	3/23/21 17:03	0.106	0.00500		0.100	ND	106	70-130	3.06	20					
Thallium [He]	3/23/21 17:03	0.106	0.00500		0.100	ND	106	70-130	1.70	20					

Project: CGLP CCR
Project Number: [none]
Project Manager: Jim Ward

Reported: 04/13/2021 13:02

Certified Analyses Included in this Report

Analyte	Certification Code
EPA 200.7 Rev 4.4 in Water	
Aluminum 237.312 [Radial]	C01,C02
Aluminum 394.401 [Radial]	C01,C02
Aluminum 396.152 [Radial]	C01,C02
Antimony 206.833 [Axial]	C01,C02
Arsenic 193.759 [Axial]	C01,C02
Barium 455.403 [Radial]	C01,C02
Barium 493.409 [Radial]	C01,C02
Beryllium 313.042 [Axial]	C01,C02
Boron 249.773 [Radial]	C01,C02
Cadmium 228.802 [Axial]	C01,C02
Calcium 315.887 [Radial]	C01,C02
Chromium 283.563 [Axial]	C01,C02
Cobalt 228.616 [Axial]	C01,C02
Copper 324.754 [Axial]	C01,C02
Iron 259.940 [Axial]	C01,C02
Iron 259.940 [Radial]	C01,C02
Lead 220.353 [Axial]	C01,C02
Lithium 610.362 [Axial]	C01,C02
Magnesium 285.213 [Radial]	C01,C02
Manganese 257.610 [Axial]	C01,C02
Molybdenum 202.030 [Axial]	C01,C02
Nickel 231.604 [Axial]	C01,C02
Potassium 766.490 [Radial]	C01,C02
Phosphorus 178.284 [Axial]	C01,C02
Phosphorus 178.284 [Radial]	C01,C02
Selenium 196.090 [Axial]	C01,C02
Silver 328.068 [Axial]	C01,C02
Sodium 589.592 [Axial]	C01,C02
Sodium 589.592 [Radial]	C01,C02
Strontium 346.446 [Radial]	C01,C02
Strontium 421.552 [Radial]	C01,C02
Thallium 190.856 [Axial]	C01,C02
Tin 189.989 [Axial]	C01,C02
Titanium 334.941 [Axial]	C01,C02
Vanadium 309.311 [Axial]	C01,C02
Zinc 213.856 [Axial]	C01,C02
EPA 200.8 Rev 5.4 in Water	
Aluminum [He]	C01,C02
Antimony [He]	C01,C02
Antimony [HHe]	C01,C02
Antimony [NG]	C01,C02

Choctaw Generation LP	Project: CGLP CCR	
2391 Pensacola Rd.	Project Number: [none]	Reported:
Ackerman MS, 39735	Project Manager: Jim Ward	04/13/2021 13:02

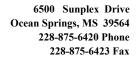
Arsenic [He]	C01
Arsenic [HHe]	C01,C02
Arsenic [NG]	C01,C02
Barium [He]	C01,C02
Beryllium [He]	C01,C02
Boron [NG]	C01,C02
Cadmium [He]	C01
Cadmium [HHe]	C01,C02
Cadmium [NG]	C01,C02
Chromium [He]	C01,C02
Cobalt [He]	C01,C02
Copper [He]	C01,C02
Copper [NG]	C01,C02
Iron [He]	C01,C02
Lead [He]	C01,C02
Lead [NG]	C01,C02
Manganese [He]	C01,C02
Molybdenum [He]	C01,C02
Nickel [He]	C01,C02
Selenium [He]	C01
Selenium [HHe]	C01,C02
Selenium [NG]	C01,C02
Silver [He]	C01,C02
Silver [NG]	C01,C02
Strontium [He]	C01,C02
Thallium [He]	C01,C02
Vanadium [He]	C01,C02
Zinc [He]	C01,C02

SM 2540 C-2011 in Water

Total Dissolved Solids C01,C02

^{**}Only compounds included in this list are associated with accredited analyses**

Project: CGLP CCR
Project Number: [none]
Project Manager: Jim Ward


Reported: 04/13/2021 13:02

Laboratory Accreditations/Certifications

Code	Description	Number	Expires
C01	LA Environmental Lab Accreditation Program	01960	06/30/2021
C02	The NELAC Institute (NELAP)	TNI01397	06/30/2021
C03	Ms Dept of Health (Drinking Water Microbiology)	MS00021	12/31/2021
C04	Ms Dept of Health (Drinking Water Chemistry)	MS00021	12/31/2021
C05	Ms DEQ Lead Firm Certification	PBF-00000028	03/24/2021
C06	MsDEQ Asbestos Inspector : C.D. Bingham	ABI-00001348	02/12/2021
C07	MsDEQ Air Monitor : C.D. Bingham	AM-011572	02/13/2021
C08	MsDEQ Asbestos Inspector: C. W. Meins	ABI-00001821	09/04/2020
C09	MsDEQ Air Monitor: C.W. Meins	AM-011189	02/13/2021
C12			
C14	MsDEQ Lead Paint Inspector : C.D. Bingham	PBI-00003690	03/24/2021
C15	MsDEQ Lead Paint Inspector : C.W. Meins	PBI-00001740	03/24/2021
Not Ce	rti.		06/30/2020

Report Definitions

TNC	Too Numerous To Count
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the minimum reporting limit
NR	Not Reported
RPD	Relative Percent Difference
ICV	Initial Calibration Verflication
CCV	Continuing Calibration Verification Standard
SSV	Secondary Source Verfication Standard
LCS	Lab Control Spike - Lab matrix prepared with known concentration of analyte/s of interest analyzed by method.
MS	Matrix Spike - Sample prepared with known concentration of analyte/s of interest analyzed by method.
MSD	Matrix Spike Duplicate - Duplicate sample prepared with known concentration of analyte/s of interest analyzed by method.
MRL	Minimum Reporting Limit
%REC	Percentage Recovery of known concentration added to matrix
Batch	Group of samples prepared for analysis not to exceed 20 samples.
Matrix	Material containing analyte/s of interest
Surrogate	Analyte added to sample to determine extraction efficiency of method.

Choctaw Generation LP Project: CGLP CCR

 2391 Pensacola Rd.
 Project Number: [none]
 Reported:

 Ackerman MS, 39735
 Project Manager: Jim Ward
 04/13/2021 13:02

Analyst Initials Key

<u>FullName</u>	<u>Initials</u>
Alyssa B Timbs	ABT
Cristina D Vargas	CDV
Charles L Vorhoff	CLV
Dortha L. Wells	DLW
Howard Mitch Spicer	HMS
Sarah E. Tomek	SET
Teresa Meins	TKM
Tina Tomek	TPT

PO Box 1410, Ocean Springs, MS 39566-1410 (228) 875-6420 FAX (228) 875-6423 www.micromethodslab.com

Chain of Custody Record

Lab ID# MS00021 LELAP ID # 01960 TNI ID # TNI01397

Pensacola Rd.	Choct	Choctaw Generation Limited Partnership LLLP	imited Part	nership		Projec	Project Manager:	ger:			ي.	Jim Ward	ard				ΤL	ırn Arc	bund -	Turn Around Time & Reporting	Repo	rting	
## CGLP CCR CGLP CCR Code Matrix Code	ess: 2391					Purcha	ase Ord	der #:									Our n	ormal tur *	n aroun	d time is	10 worki	ng days	
Sampler Name Printed K.H.S. Settle College	City: Ackerman		Zip:	39735		Email	Addres	S:	240			020	200	7	and	Ne.	xt Day*	Ге	quests	must b	ē	Ma	il
CGLP CCR		58				Sampl	er Nam	ne Print	ted:	~	-	5	3		7	10th	er*	73	prior ap	proved	1,425	Em.	aii
CGLP CCR	Fax:					Sampl	er Nam	e Sign	ed:		F	1		5	N	QC Lev	el: Leve	<u></u>	Leve	2	ovo	۵	
CGLP CCR Preservative Color Co								L	ist A	nalys	es R	eques	sted				Fie	id Te	sting				
Sampling Code Cod	Project Name:	CGLI				rs Preserv.) ative:	-	c c	+				Ш	*	Eield Te	E D#	100	#	iD#		atrix:	
Bentification Sampling Matrix Color	Project #:						osite (C		ulfate	oron, Berylliui	n Chromium			enium		i		į,	ie io	rieid		= Water / = Drink Wate	(ing
MAN-13 3/15/21/16-51 W 4 G X X X X X X X X X	Sample Identif	ication	Sampli Date/Ti		Matrix Code		Compo		S	Barium. B	Cadmiu			Sel							S = S	Solid = Soil	
MW-13 3 16/21/16:51 W 4 G X X X X X X X X X	9-WM		3/15/21	17.26	8			×	X	\times	X	X	X	×	× '	1	+	1			35	= Sedim	ent
MW-73 3 U/h) 11:5¢ W 4 G X X X X X X X X X	OW-2		15/211	16:51	V	4	០	X	X	\times	\times	X	X	\times	X.		+	_		+	A	Air	
MM-74 31(2) 13:40 W 4 G X X X X X X X X X	MW-13			11:5%	٤	4	ଜ	X	X	\times	\times	X	X	X	X		+			+	2 0	- Shirdae	
Signshure Sign	MW-7			3:40	8	4	G	×	×	\times	X	X	\times	\times	X		+	_			}	, and	
Simplicate Sim	MW-14			4:20	8	4	ଜ	X	X	\times	X	X	X	\times	X		+						
MW-12 3/15/11/16/20 W 4 G X X X X X X X X X	Field Bla]X	1	3.33	8	4	6	X	X	×	X	X	X	X	X		1	_			Pr	eserva	tion:
MW-12 3/15/21/16:20 W 4 G X X X X X X X X X	Duplica	te	1	1	8	4	G	\times	$\frac{\times}{}$	\times	\times	X	X	X	X		+	4		\dagger	<u> </u>	H2504	
CCR-2 3/15/21/18:05 W 4 G X X X X X X X X X	MW-12			6:20	8	4	G	×	X	\times	X	X	\times	\times	X		+	1		1	2=	H3P04	- 11- 12
CORRAL 3/15/21/10:43 W 4 G X X X X X X X X X	CCR-2			\$105	×	4	G	X	X	×	X	X	\times	\times	X		\dagger	\downarrow		1	4=	ZnC4H1(306
Signature Sign	CCR-3		-	35.3	8	4	6	X	\times	X	X	X	X	X	X		1	1		1	5=.	ZnC4H1	306 &
By: S Sample Blank X Cooler *** Receipt Temp Corrected(°C) Sample Blank X Cooler *** Printed Name Company Date Time No FEA EX FEA EX SIGNATURE SMAN JOHN MM 31721 1000 CO	-		112/91/	0:43	8	4	G	X	X	X	\times	\times	X	X	X					1	6=1	NO3	
Printed Name Ruft Shelton Fed Ex Fed Ex France Mann Tomer Ma	ived on ice:		er# 4	9	oler#		Re	ceipt		Corr	ectec	(00)									7=	Va2520:	w
Finted Name Kint Shilton FED EX FED EX SUBM TOMME SUBM TIME NO SUBM TOMME SUBM TOM	Q		Ý:	2			Sal	mple_		Blank		Coole				**All Te	mps are	Correct	ed Valu	ies**	9=1	NaHSO4	
Kirl Shelton Waltham ECS, Inc 3/16/21 1700 CC		Printed	Vame			Signe	ture			Co	mpany		Date		ime	Notes:					-		
SWANTOMER SWANTOWNER NM 3/17/21 1000 CC	Relinquished by	Kind Shalto	3		MO	2	7			5	SIL	r	3/16	12/	700	6		SOE	6	62 :	397	655	٦
SWANTOWER SWANTOWER NM 3/17/21 1000 COOKE # 1122 COOKE # 1119	Received by	reab	1	1												i.	<i>Y</i>	7	•	2	``		
SUMMIN TOWAR SWAM HOMEN MM SIME 1000 COOKER 1122	Relinquished by	o Fed	Ø	1	B		1							4		, , ,	1/2	700	3	,	1	1050	
COOKY # 110a	Received by	SUMM 7	omes	7	SMI	1/1	MOM	res	7	1	Z		3/1/2	2	1000	1007	THE	11:	0	1/2	イナット		
DUIT # AMOUNT	Relinquished by					0							,	_	y:	000	H H	-	10	3=	tot	2	
	Received by															300	H		na	30	6.		

Physical Address: 6500 Sunplex Drive, Ocean Springs MS 39564

Print Form

Chain of Custody Record

Print Form

PO Box 1410, Ocean Springs, MS 39566-1410 (228) 875-6420 FAX (228) 875-6423 www.micromethodslab.com

	Lab ID# MS00021 LELAP ID # 01960 TNI ID # TNI01397	
K.	0	
7100	1 AC 7	
	WO#	M-M Lab
	2103321	7

Choctaw Generation Limited Partnership LLLP	Partnership LLLP	Project Manager: Jim Ward	Turn Around Time & Reporting
oddress: 2391 Pensacola Rd.		Purchase Order #:	Our normal turn around time is 10 working days *All rush order Phone
Ackerman State: MS Z	Zip: 39735	Email Address: LSh Longen viloury. not	ay* requests must be
hone: 662-387-5758		1	prior approved. —
ax		10	QC Level: Level 1 Level 2 Level 3
		List Analyses Requested	Field Testing
roject Name: CGLP CCR	R	servative:	ID#
roject #:		DS p. Fluoridulfate p. Chromeum calcium, bendum. enium dium 226	
Sample Identification Da	Sampling Matrix Date/Time Code	# of Co	S = Solid SO = Soli
CCR-5 3/16/21	M 04.5/12	+	L = Liquid
			0 = 0
			Preservation:
			2= H3PO4
			3=NaOH
			4=ZnC4H1006 5-ZnC4H1006 8
The second secon			NaOH
Sprained on Iro2 V N Thormomotor#			6=HNO3 7=Na2C2O3
		Sample Blank Cooler	**All Temps are Corrected Values** 9=Nc)
Printed Name		Signature Company Date Time	
Relinquished by Kill Shilton	MX	3/14/21 1700	
Received by FRO TX			
Relinquished by 1 Fed Ex	1		
Received by XMM 197	nex 100	Vidintomen MN 3/1/2/1000	
Relinquished by			
Received by			

Physical Address: 6500 Sunplex Drive, Ocean Springs MS 39564

April 13, 2021

Tina Tomek Micro Methods Laboratory, Inc. P. O. Box 1410 Ocean Springs, MS 39566

RE: Project: 2103321

Pace Project No.: 20193984

Dear Tina Tomek:

Enclosed are the analytical results for sample(s) received by the laboratory on March 19, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Greensburg

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Karen Brown karen.brown@pacelabs.com

Kaunt Prour

(504)469-0333 Project Manager

Enclosures

CERTIFICATIONS

Project: 2103321
Pace Project No.: 20193984

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET

Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235
Montana Certification #: Cert0082
Nebraska Certification #: NE-OS-29-14
Nevada Certification #: PA014572018-1
New Hampshire/TNI Certification #: 297617
New Jersey/TNI Certification #: PA051
New Mexico Certification #: PA01457
New York/TNI Certification #: 10888
North Carolina Certification #: 42706

Ohio EPA Rad Approval: #41249 Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification
Tennessee Certification #: 02867

North Dakota Certification #: R-190

Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

REPORT OF LABORATORY ANALYSIS

SAMPLE SUMMARY

Project: 2103321
Pace Project No.: 20193984

Lab ID	Sample ID	Matrix	Date Collected	Date Received
20193984001	2103321-01	Water	03/15/21 17:26	03/19/21 10:20
20193984002	2103321-02	Water	03/15/21 16:51	03/19/21 10:20
20193984003	2103321-03	Water	03/16/21 11:56	03/19/21 10:20
20193984004	2103321-04	Water	03/16/21 13:40	03/19/21 10:20
20193984005	2103321-05	Water	03/16/21 14:20	03/19/21 10:20
20193984006	2103321-06	Water	03/16/21 13:33	03/19/21 10:20
20193984007	2103321-07	Water	03/15/21 00:00	03/19/21 10:20
20193984008	2103321-08	Water	03/15/21 16:20	03/19/21 10:20
20193984009	2103321-09	Water	03/15/21 18:05	03/19/21 10:20
20193984010	2103321-10	Water	03/15/21 18:35	03/19/21 10:20
20193984011	2103321-11	Water	03/16/21 10:43	03/19/21 10:20
20193984012	2103321-12	Water	03/16/21 09:40	03/19/21 10:20

REPORT OF LABORATORY ANALYSIS

SAMPLE ANALYTE COUNT

Project: 2103321
Pace Project No.: 20193984

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
20193984001	2103321-01	EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
20193984002	2103321-02	EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
20193984003	2103321-03	EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
20193984004	2103321-04	EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
20193984005	2103321-05	EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
20193984006	2103321-06	EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
20193984007	2103321-07	EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
20193984008	2103321-08	EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
20193984009	2103321-09	EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
20193984010	2103321-10	EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
20193984011	2103321-11	EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA
20193984012	2103321-12	EPA 903.1	MK1	1	PASI-PA
		EPA 904.0	VAL	1	PASI-PA

PASI-PA = Pace Analytical Services - Greensburg

REPORT OF LABORATORY ANALYSIS

(504)469-0333

PROJECT NARRATIVE

Project: 2103321
Pace Project No.: 20193984

Method: EPA 903.1

Description:903.1 Radium 226Client:Micro MethodsDate:April 13, 2021

General Information:

12 samples were analyzed for EPA 903.1 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: 2103321
Pace Project No.: 20193984

Method: EPA 904.0

Description: 904.0 Radium 228 **Client:** Micro Methods **Date:** April 13, 2021

General Information:

12 samples were analyzed for EPA 904.0 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: 2103321
Pace Project No.: 20193984

Sample: 2103321-01 PWS:	Lab ID: 20193 Site ID:	3984001 Collected: 03/15/21 17:26 Sample Type:	Received:	03/19/21 10:20 M	latrix: Water	
FVV3.	Site ID.					
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical S	Services - Greensburg				
Radium-226	EPA 903.1	1.09 ± 0.661 (0.852) C:NA T:93%	pCi/L	04/09/21 11:43	13982-63-3	
	Pace Analytical S	Services - Greensburg				
Radium-228	EPA 904.0	0.594 ± 0.421 (0.826) C:73% T:98%	pCi/L	04/12/21 15:52	15262-20-1	
Sample: 2103321-02	Lab ID: 20193		Received:	03/19/21 10:20 M	latrix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical S	Services - Greensburg				
Radium-226	EPA 903.1	0.221 ± 0.253 (0.150) C:NA T:97%	pCi/L	04/09/21 12:03	13982-63-3	
	Pace Analytical S	Services - Greensburg				
Radium-228	EPA 904.0	0.247 ± 0.408 (0.887) C:70% T:93%	pCi/L	04/12/21 16:27	15262-20-1	
Sample: 2103321-03	Lab ID: 20193	3984003 Collected: 03/16/21 11:56	Received:	03/19/21 10:20 M	latrix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical S	Services - Greensburg				
Radium-226	EPA 903.1	0.172 ± 0.434 (0.806) C:NA T:89%	pCi/L	04/09/21 12:03	13982-63-3	
	Pace Analytical S	Services - Greensburg				
Radium-228	EPA 904.0	1.72 ± 0.710 (1.21) C:73% T:86%	pCi/L	04/12/21 15:56	15262-20-1	
Sample: 2103321-04 PWS:	Lab ID: 20193 Site ID:	8984004 Collected: 03/16/21 13:40 Sample Type:	Received:	03/19/21 10:20 N	latrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
		Services - Greensburg				
Radium-226	EPA 903.1	0.329 ± 0.342 (0.508) C:NA T:95%	pCi/L	04/09/21 12:03	13982-63-3	
	Pace Analytical S	Services - Greensburg				
Radium-228	EPA 904.0	1.01 ± 0.511 (0.923)	pCi/L	04/12/21 15:56	15262-20-1	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: 2103321
Pace Project No.: 20193984

Lab ID: 20193 Site ID:	984005 Collected: 03/16/21 14:20 Sample Type:	Received:	03/19/21 10:20 M	latrix: Water	
Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Pace Analytical S	Services - Greensburg				
EPA 903.1	0.172 ± 0.407 (0.753) C:NA T:89%	pCi/L	04/09/21 12:03	13982-63-3	
Pace Analytical S	Services - Greensburg				
EPA 904.0	0.655 ± 0.507 (1.02) C:73% T:92%	pCi/L	04/12/21 15:56	15262-20-1	
		Received:	03/19/21 10:20 M	Matrix: Water	
Site ID:	Sample Type:				
Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Pace Analytical S	Services - Greensburg				
EPA 903.1	0.0602 ± 0.354 (0.723) C:NA T:90%	pCi/L	04/09/21 12:03	13982-63-3	
Pace Analytical S	Services - Greensburg				
EPA 904.0	0.0588 ± 0.514 (1.17) C:73% T:89%	pCi/L	04/12/21 15:56	15262-20-1	
Lab ID: 20193	984007 Collected: 03/15/21 00:00	Received:	03/19/21 10:20 M	Matrix: Water	
Site ID:	Sample Type:				
Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Pace Analytical S	Services - Greensburg				
EPA 903.1	0.164 ± 0.387 (0.716) C:NA T:102%	pCi/L	04/09/21 12:03	13982-63-3	
Pace Analytical S	Services - Greensburg				
EPA 904.0	-0.0425 ± 0.809 (1.85) C:69% T:87%	pCi/L	04/12/21 19:23	15262-20-1	
	984008 Collected: 03/15/21 16:20	Received:	03/19/21 10:20 M	Matrix: Water	
Site ID:	Sample Type:				
Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Pace Analytical S	Services - Greensburg				
EPA 903.1	0.123 ± 0.382 (0.740) C:NA T:89%	pCi/L	04/09/21 12:03	13982-63-3	
Pace Analytical S	Services - Greensburg				
EPA 904.0	1.24 ± 0.729 (1.38)	pCi/L	04/12/21 19:23	15262-20-1	
	Site ID: Method Pace Analytical S EPA 903.1 Pace Analytical S EPA 904.0 Lab ID: 20193 Site ID: Method Pace Analytical S EPA 903.1 Pace Analytical S EPA 904.0 Lab ID: 20193 Site ID: Method Pace Analytical S EPA 903.1 Pace Analytical S EPA 903.1 Pace Analytical S EPA 903.1 Pace Analytical S EPA 904.0	Method Act ± Unc (MDC) Carr Trac	Method Act ± Unc (MDC) Carr Trac Units	Site ID: Sample Type: Method Act ± Unc (MDC) Carr Trac Units Analyzed	Site ID:

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: 2103321
Pace Project No.: 20193984

Sample: 2103321-09 PWS:	Lab ID: 20193984 Site ID:	009 Collected: 03/15/21 18:05 Sample Type:	Received:	03/19/21 10:20 M	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Serv	· · · · · · · · · · · · · · · · · · ·				
Radium-226	EPA 903.1	0.429 ± 0.526 (0.864) C:NA T:93%	pCi/L	04/09/21 12:03	13982-63-3	
	Pace Analytical Serv	ices - Greensburg				
Radium-228	EPA 904.0	0.461 ± 0.735 (1.59) C:72% T:87%	pCi/L	04/12/21 19:23	15262-20-1	
Sample: 2103321-10 PWS:	Lab ID: 20193984 Site ID:	010 Collected: 03/15/21 18:35 Sample Type:	Received:	03/19/21 10:20 M	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Serv	ices - Greensburg		·		
Radium-226	EPA 903.1	0.231 ± 0.392 (0.692) C:NA T:91%	pCi/L	04/09/21 12:25	13982-63-3	
	Pace Analytical Serv	ices - Greensburg				
Radium-228	EPA 904.0	0.205 ± 0.833 (1.87) C:65% T:91%	pCi/L	04/12/21 19:23	15262-20-1	
Sample: 2103321-11	Lab ID: 20193984		Received:	03/19/21 10:20	Matrix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Serv	ices - Greensburg				
Radium-226	EPA 903.1	0.599 ± 0.475 (0.645) C:NA T:85%	pCi/L	04/09/21 12:25	13982-63-3	
	Pace Analytical Serv	ices - Greensburg				
Radium-228	EPA 904.0	0.129 ± 0.562 (1.27) C:67% T:90%	pCi/L	04/12/21 17:51	15262-20-1	
Sample: 2103321-12	Lab ID: 20193984	012 Collected: 03/16/21 09:40	Received:	03/19/21 10:20	Matrix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Serv	ices - Greensburg				
Radium-226	EPA 903.1	0.000 ± 0.306 (0.686) C:NA T:88%	pCi/L	04/09/21 12:25	13982-63-3	
	Pace Analytical Serv	ices - Greensburg				
Radium-228	EPA 904.0	0.757 ± 0.520 (1.01) C:71% T:98%	pCi/L	04/12/21 17:52	15262-20-1	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALITY CONTROL - RADIOCHEMISTRY

Project: 2103321
Pace Project No.: 20193984

QC Batch: 440770 Analysis Method: EPA 903.1

QC Batch Method: EPA 903.1 Analysis Description: 903.1 Radium-226

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 20193984001, 20193984002, 20193984003, 20193984004, 20193984005, 20193984006, 20193984007,

20193984008, 20193984009, 20193984010, 20193984011, 20193984012

METHOD BLANK: 2127957 Matrix: Water

Associated Lab Samples: 20193984001, 20193984002, 20193984003, 20193984004, 20193984005, 20193984006, 20193984007,

20193984008, 20193984009, 20193984010, 20193984011, 20193984012

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.0921 ± 0.286 (0.553) C:NA T:94%
 pCi/L
 04/09/21 11:43

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

QUALITY CONTROL - RADIOCHEMISTRY

Project: 2103321
Pace Project No.: 20193984

QC Batch: 440771 Analysis Method: EPA 904.0

QC Batch Method: EPA 904.0 Analysis Description: 904.0 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 20193984001, 20193984002, 20193984003, 20193984004, 20193984005, 20193984006, 20193984007,

20193984008, 20193984009, 20193984010, 20193984011, 20193984012

METHOD BLANK: 2127958 Matrix: Water

Associated Lab Samples: 20193984001, 20193984002, 20193984003, 20193984004, 20193984005, 20193984006, 20193984007,

20193984008, 20193984009, 20193984010, 20193984011, 20193984012

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.305 ± 0.335 (0.700) C:74% T:100%
 pCi/L
 04/12/21 15:51

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

QUALIFIERS

Project: 2103321 Pace Project No.: 20193984

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Date: 04/13/2021 10:49 AM

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The Nelac Institute

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 2103321
Pace Project No.: 20193984

Date: 04/13/2021 10:49 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
20193984001	2103321-01	EPA 903.1	440770		
20193984002	2103321-02	EPA 903.1	440770		
20193984003	2103321-03	EPA 903.1	440770		
20193984004	2103321-04	EPA 903.1	440770		
20193984005	2103321-05	EPA 903.1	440770		
20193984006	2103321-06	EPA 903.1	440770		
20193984007	2103321-07	EPA 903.1	440770		
20193984008	2103321-08	EPA 903.1	440770		
20193984009	2103321-09	EPA 903.1	440770		
20193984010	2103321-10	EPA 903.1	440770		
20193984011	2103321-11	EPA 903.1	440770		
20193984012	2103321-12	EPA 903.1	440770		
20193984001	2103321-01	EPA 904.0	440771		
20193984002	2103321-02	EPA 904.0	440771		
20193984003	2103321-03	EPA 904.0	440771		
20193984004	2103321-04	EPA 904.0	440771		
20193984005	2103321-05	EPA 904.0	440771		
20193984006	2103321-06	EPA 904.0	440771		
20193984007	2103321-07	EPA 904.0	440771		
20193984008	2103321-08	EPA 904.0	440771		
20193984009	2103321-09	EPA 904.0	440771		
20193984010	2103321-10	EPA 904.0	440771		
20193984011	2103321-11	EPA 904.0	440771		
20193984012	2103321-12	EPA 904.0	440771		

/ WO#: 20193984

RACT

Sending Laboratory:

Micro-Methods Laboratory, Inc.

6500 Sunplex Drive

Ocean Springs, MS 39564 Phone: 228.875.6420

Fax: 228.875.6423

eleased By

Project Manager: Teresa Meins

Subcontracted Laboratory:

Pace Analytical

1000 Riverbend Blvd. Suite F

St. Rose, LA 70087

Phone: -

Fax: -

Work Order: 2103321					
Analysis	Due	Expires	Comments		
Sample ID: 2103321-01 <i>Water</i>	Sampled: 03/.	15/2021 17:26	Sample Name:	MW-9	
Radium,Total 226 & 228 by EPA 903.1 &	90 03/25/2021	04/12/2021 17:26	5		
Containers Supplied: 1000mL Plastic w/HNO3 (A) 1000mL Plast	ic w/HNO3 (B)				
ample ID: 2103321-02 Water	Sampled: 03/.	15/2021 16:51	Sample Name:	OW-2	
Radium, Total 226 & 228 by EPA 903.1 &	90 03/25/2021	04/12/2021 16:51	•		
ontainers Supplied: 1000mL Plastic w/HNO3 (A) 1000mL Plast	ic w/HNO3 (B)				
Sample ID: 2103321-03 Water	Sampled: 03/.	16/2021 11:56	Sample Name:	MW-13	
Radium, Total 226 & 228 by EPA 903.1 &	90 03/25/2021	04/13/2021 11:56)		
ontainers Supplied: 1000mL Plastic w/HNO3 (A) 1000mL Plast	ic w/HNO3 (B)				
ample ID: 2103321-04 Water	Sampled: 03/.	16/2021 13:40	Sample Name:	MW-7	
Radium, Total 226 & 228 by EPA 903.1 &	90 03/25/2021	04/13/2021 13:40			
ontainers Supplied: 1000mL Plastic w/HNO3 (A) 1000mL Plast	ic w/HNO3 (B)				
ample ID: 2103321-05 Water	Sampled: 03/.	16/2021 14:20	Sample Name:	MW-14	
Smah Jameh 3/	90 03/25/2021 18/21 D 163	04/13/2021 14:20	WS.	3/18/21	O 1630
leased By	Date	Receiv	ved By ⊿1	4	Date 10:20
# 1/15 3/19/	211 10.2	0 4	LIX	Pace	3/19/20
Peleased By	Date	Receiv	ved DV		Date
∛oleased By	Date	Receiv	ved By		Date
eleased By	Date	Receiv	ved By	10-10-11-11-11-11-11-11-11-11-11-11-11-1	Date

Received By

Date

Date

SUBCONTRACT ORDER (Continued)

	Due	Ex	pires	Comments			
000mL Plasti	ic w/HNO3 (B)						
Water	Sampled: 03/	16/2021	13:33	Sample Name:	Field Blank		
PA 903.1 &	90 03/25/2021	04/13/2	021 13:33				
000mL. Pl asti	c w/HNO3 (B)			· · · · · · · · · · · · · · · · · · ·			
Water	Sampled: 03/.	5/2021	00:00	Sample Name:	Duplicate		
PA 903.1 &	90 03/25/2021	04/12/2	021 00:00				
000mL Plasti	c w/HNO3 (B)		·				
Water	Sampled: 03/	5/2021	16:20	Sample Name:	MW-12		
		04/12/2	021 16:20				
Water	Sampled: 03/2	5/2021	18:05	Sample Name:	CCR-2		
PA 903.1 &	90 03/25/2021	04/12/2	021 18:05				
000mL Plasti	c w/HNO3 (B)				* 4		
Water	Sampled: 03/2	5/2021	18:35	Sample Name:	CCR-3		
PA 903.1 &	90 03/25/2021	04/12/2	021 18:35				
000mL Plasti	c w/HNO3 (B)						
Water	Sampled: 03/2	6/2021	10:43	Sample Name:	CCR-4		
PA 903.1 &	90 03/25/2021	04/13/2	021 10:43				
000mL Plasti	c w/HNO3 (B)						
Water	Sampled: 03/1	6/2021	09:40	Sample Name:	CCR-5		
h 3	8/18/21/0 /	b30		1195	3/18	121A 1	1630
71	Date		Receiv	red By	_	Date	
3/14	1/2/12 100	Lo	\mathcal{L}	him	Pace	3/19/2	(10:21
			Receiv	and Die		Date	······································
	Date		Necelv	eu zy		·	
	Date Date	,	Receiv	•		Date	
				•		Date	
				red By			
	Water PA 903.1 & 000mL Plasti	Water Sampled: 03/1 PA 903.1 & 9C 03/25/2021 O00ml. Plastic w/HN03 (B) Water Sampled: 03/1 PA 903.1 & 9C 03/25/2021 O00ml. Plastic w/HN03 (B) Water Sampled: 03/1 PA 903.1 & 9C 03/25/2021 O00ml. Plastic w/HN03 (B) Water Sampled: 03/1 PA 903.1 & 9C 03/25/2021 O00ml. Plastic w/HN03 (B) Water Sampled: 03/1 PA 903.1 & 9C 03/25/2021 O00ml. Plastic w/HN03 (B) Water Sampled: 03/1 PA 903.1 & 9C 03/25/2021 O00ml. Plastic w/HN03 (B) Water Sampled: 03/1 PA 903.1 & 9C 03/25/2021 O00ml. Plastic w/HN03 (B) Water Sampled: 03/1 PA 903.1 & 9C 03/25/2021 O00ml. Plastic w/HN03 (B) Water Sampled: 03/1 PA 903.1 & 9C 03/25/2021	Water Sampled: 03/16/2021 PA 903.1 & 9C 03/25/2021 04/13/2000mL Plastic w/HNO3 (B) Water Sampled: 03/15/2021 PA 903.1 & 9C 03/25/2021 04/12/2000mL Plastic w/HNO3 (B) Water Sampled: 03/15/2021 PA 903.1 & 9C 03/25/2021 04/12/2000mL Plastic w/HNO3 (B) Water Sampled: 03/15/2021 PA 903.1 & 9C 03/25/2021 04/12/2000mL Plastic w/HNO3 (B) Water Sampled: 03/15/2021 PA 903.1 & 9C 03/25/2021 04/12/2000mL Plastic w/HNO3 (B) Water Sampled: 03/15/2021 PA 903.1 & 9C 03/25/2021 04/12/2000mL Plastic w/HNO3 (B) Water Sampled: 03/16/2021 PA 903.1 & 9C 03/25/2021 04/12/2000mL Plastic w/HNO3 (B) Water Sampled: 03/16/2021 PA 903.1 & 9C 03/25/2021 04/13/2000mL Plastic w/HNO3 (B)	### Pastic w/HNO3 (B) #### Sampled: 03/16/2021 13:33 PA 903.1 & 9C 03/25/2021 04/13/2021 13:33 #### Sampled: 03/15/2021 00:00 PA 903.1 & 9C 03/25/2021 04/12/2021 00:00 PA 903.1 & 9C 03/25/2021 04/12/2021 16:20 PA 903.1 & 9C 03/25/2021 04/12/2021 16:20 #### Sampled: 03/15/2021 16:20 #### Pastic w/HNO3 (B) #### Water Sampled: 03/15/2021 18:05 PA 903.1 & 9C 03/25/2021 04/12/2021 18:05 PA 903.1 & 9C 03/25/2021 04/12/2021 18:05 PA 903.1 & 9C 03/25/2021 04/12/2021 18:35 PA 903.1 & 9C 03/25/2021 04/12/2021 10:43 PA 903.1 & 9C 03/25/2021 04/13/2021 10:43	Water Sampled: 03/16/2021 13:33	### Water Sampled: 03/16/2021 13:33 Sample Name: Field Blank PA 903.1 & 9C 03/25/2021 04/13/2021 13:33 ### Sampled: 03/15/2021 00:00 Sample Name: Duplicate PA 903.1 & 9C 03/25/2021 04/12/2021 00:00 ### Sampled: 03/15/2021 04/12/2021 00:00 ### Sampled: 03/15/2021 16:20 Sample Name: MW-12 ### Sampled: 03/15/2021 16:20 Sample Name: MW-12 ### Sampled: 03/15/2021 16:20 Sample Name: CCR-2 ### PA 903.1 & 9C 03/25/2021 04/12/2021 16:05 ### Sampled: 03/15/2021 18:05 Sample Name: CCR-2 ### PA 903.1 & 9C 03/25/2021 04/12/2021 18:35 Sample Name: CCR-3 ### PA 903.1 & 9C 03/25/2021 04/12/2021 18:35 ### Sampled: 03/15/2021 10:43 Sample Name: CCR-4 ### PA 903.1 & 9C 03/25/2021 04/13/2021 10:43 ### Sampled: 03/16/2021 10:43 Sample Name: CCR-4 ### PA 903.1 & 9C 03/25/2021 04/13/2021 10:43 ### Sampled: 03/16/2021 09:40 Sample Name: CCR-5 ### PA 903.1 & 9C 03/25/2021 04/13/2021 10:43 ### Sampled: 03/16/2021 09:40 Sample Name: CCR-5 ### PA 903.1 & 9C 03/25/2021 04/13/2021 10:43 ### PA 903.1 &	### Water Sampled: 03/15/2021 04/13/2021 13:33 **PA 903.1 & 9C 03/25/2021 04/13/2021 13:33 **PA 903.1 & 9C 03/25/2021 04/13/2021 13:33 **PA 903.1 & 9C 03/25/2021 04/12/2021 00:00 **PA 903.1 & 9C 03/25/2021 04/12/2021 00:00 **PA 903.1 & 9C 03/25/2021 04/12/2021 00:00 **PA 903.1 & 9C 03/25/2021 04/12/2021 16:20 **PA 903.1 & 9C 03/25/2021 04/12/2021 16:20 **PA 903.1 & 9C 03/25/2021 04/12/2021 16:20 **PA 903.1 & 9C 03/25/2021 04/12/2021 18:05 **PA 903.1 & 9C 03/25/2021 04/12/2021 18:05 **PA 903.1 & 9C 03/25/2021 04/12/2021 18:35 **PA 903.1 & 9C 03/25/2021 04/13/2021 10:43 **PA 903.1 & 9C 03

SUBCONTRACT ORDER

(Continued)

Vork Order: 2103321 (Continued	Vork C	rder:	2103321 ((Continued)
--------------------------------	--------	-------	-----------	-------------

Analysis		Due	Ex	pires	Comments		
ample ID: 2103321-12	Water :	Sampled: 03/1	6/2021	09:40	Sample Name:	CCR-5	
Radium, Total 226 & 228 by EPA	903.1 & 90	03/25/2021	04/13/2	021 09:40			
Containers Supplied: 1000mL Plastic w/HNO3 (A) 100	0mL Plastic	w/HNO3 (B)			·		
사용 							
100 mg/m						•	
F.							
(전) 사람 (조)							
				_			

Mahamh 3/18/ Meased By WS 3/19/216	2181630 Date 1 10120	Received By	3/18/21 10/30 Date Bec 3/19/21 10:20
eleased By	Date	Received By	Date
eleased By	Date	Received By	Date
Released By	Date	Received By	Date
eleased By	Date	Received By	Date

WO#: 20193984

Face Analytical 1000 Riverbend, Blv. St. Rose, LA 70087	Sample Co 1, Suite F			20-MICRO	04/12/21
Courier: Pace Courier Hired Cour	ier 🛘 Fed X	UPS	□ DHL	☐ USPS ☐ Custo	— mer □ Other
Custody Seal on Cooler/Box Present:	see COC]			Custody Seals inta	et ∑ Yes □No
Therometer	Type of ic	e: Wet	: Blue None	Samples on ice:	[see COC]
Cooler Temperature: [see COC]	emp should be	above free	zing to 6°C	Date and Initials of person contents:	on examining
Temp must be measured from Temperature blank wh	en present	Co	omments:		
Temperature Blank Present"?	□Yes N o	□N/A 1			
Chain of Custody Present:	Ü x (es □No	□N/A 2		,	
Chain of Custody Complete:	Ž (Yes ∐No	□N/A 3			
Chain of Custody Relinquished:	XYes □No	□NA 4			
sampler Name & Signature on COC:	□Yes ∑N o	□N/A 5			
amples Arrived within Hold Time:	Yes □No	□N/A 6		^	
ufficient Volume:	XYes □No	□N/A 7	21.1	ers w HNO	3
orrect Containers Used:	Maries □No	□n/a 8			
iftered vol. Rec. for Diss. tests	□Yes □No	50 4 9	•		
ample Labels match COC:	Mo □No	□N/A 10			
Il containers received within manafacture's recautionary and/or expiration dates.	∑ res □No	□N/A 11			
I containers needing chemical preservation haven checked (except VOA, coliform, & O&G).	Yes 🗆 No	□N/A 12			
containers preservation checked found to be impliance with EPA recommendation.	Π Yes □No	□N/A 13		serative added? □Yes i d lot no.: HNO3	:No H2SO4
eadspace in VOA Vials (>6mm):	□Yes □No	WA 14			
p Blank Present:	□Yes \\ No	15			
		·			
ent Notification/ Resolution:					
rson Contacted:				Date/Time:	
mments/ Resolution:					····

Mailing Address: PO Box 1410 Ocean Springs, MS 39566-1410

DOCUMENT CHANGE NOTICE

6500 Sunplex Drive Ocean Springs, MS 39564 228.875.6420 Phone 228.875.6423 Fax

Revised Report

January 18, 2022

Jim Ward Work Order #: 2105488

Choctaw Generation LP Purchase Order # RDH14390

2391 Pensacola Rd.

Ackerman, MS 39735

RE: CGLP CCR Semi Annual

Enclosed is the <u>revised</u> report for samples received by the laboratory on 05/27/2021 10:33. This report supercedes any previous version of the above noted work order. If you have any questions concerning this report, please feel free to contact the office.

Sincerely,

Mitch Spicer

Lab Director

DISCLAIMER

The results only relate to the items or the sample and/or samples received by the laboratory. This report shall not be reproduced except in full, without the approval of the laboratory. All NELAP certified test methods performed meet the requirements of NELAC 2009 Standards. Any variances and/or deviations specific to this analytical report are referenced in the lab report using qualifiers and detailed explanations found in the case narrative.

Choctaw Generation LP 2391 Pensacola Rd.

Ackerman MS, 39735

Project: CGLP CCR Semi Annual

Project Number: Annual
Project Manager: Jim Ward

Reported: 01/18/2022 07:58

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date/Time Sampled	Sampled by	Date/Time Received
MW-7	2105488-01	Water	05/26/2021 12:00	Cam Clark	05/27/2021 10:33
MW-9	2105488-02	Water	05/26/2021 10:48	Cam Clark	05/27/2021 10:33
MW-12	2105488-03	Water	05/26/2021 10:05	Cam Clark	05/27/2021 10:33
MW-13	2105488-04	Water	05/26/2021 12:55	Cam Clark	05/27/2021 10:33
MW-14	2105488-05	Water	05/26/2021 10:55	Cam Clark	05/27/2021 10:33
Field Blank	2105488-06	Water	05/26/2021 12:35	Cam Clark	05/27/2021 10:33
Duplicate	2105488-07	Water	05/26/2021 00:00	Cam Clark	05/27/2021 10:33
OW-2	2105488-08	Water	05/26/2021 09:25	Cam Clark	05/27/2021 10:33
CCR-2	2105488-09	Water	05/26/2021 12:05	Cam Clark	05/27/2021 10:33
CCR-3	2105488-10	Water	05/26/2021 11:23	Cam Clark	05/27/2021 10:33
CCR-4	2105488-11	Water	05/26/2021 08:26	Cam Clark	05/27/2021 10:33
CCR-5	2105488-12	Water	05/26/2021 08:45	Cam Clark	05/27/2021 10:33

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

Choctaw Generation LP

Project: CGLP CCR Semi Annual

2391 Pensacola Rd. Project Number: Annual
Ackerman MS, 39735 Project Manager: Jim Ward

Reported: 01/18/2022 07:58

Sample Receipt Conditions

Date/Time Received: 5/27/2021 10:33:00AM Shipped by: Fed Ex

Received by: Sarah E. Tomek Submitted by: Cam Clark

Date/Time Logged: 5/28/2021 10:46:00AM Logged by: Sarah E. Tomek

Cooler ID: #1130 Receipt Temperature: 5.5 °C

Received on Ice but Not Frozen Yes Cooler Custody Seals Present Yes Containers Intact Yes No Ice, Short Trip No COC/Labels Agree Yes **Obvious Contamination** No Labels Complete Yes Rush to meet HT No COC Complete Received within HT Yes Yes Volatile Vial Headspace >6mm Proper Containers for Analysis Yes No Field Sheet/Instructions Included No Correct Preservation Yes Samples Rejected/Documented in Log No Adequate Sample for Analysis Yes Temp Taken From Temp Blank Yes Sample Custody Seals Present Yes Temp Taken From Sample Container Samples Missing from COC/Cooler No No

Temp Taken From Cooler No COC meets acceptance criteria Yes

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

Choctaw Generation LP Project: CGLP CCR Semi Annual

2391 Pensacola Rd. Project Number: Annual Reported:
Ackerman MS, 39735 Project Manager: Jim Ward 01/18/2022 07:58

Containers Intact Containers Intact Concollege Yes Cocyleables Agree Yes Cocyleables Complete Yes Rush to meet HT No COC Complete Yes Received within HT Yes Volatile Vial Headspace >6mm No Froper Containers for Analysis Yes Field Sheet/Instructions Included No Correct Preservation Yes Samples Rejected/Documented in Log No Adequate Sample for Analysis Yes Temp Taken From Temp Blank Yes Sample Custody Seals Present Yes Temp Taken From Cooler No COC meets acceptance criteria Yes	Cooler Custody Seals Present	Yes	Received on Ice but Not Frozen	Yes
COC/Labels Agree Yes Obvious Contamination No Labels Complete Yes Rush to meet HT No COC Complete Yes Received within HT Yes Volatile Vial Headspace >6mm No Proper Containers for Analysis Yes Field Sheet/Instructions Included No Correct Preservation Yes Samples Rejected/Documented in Log No Adequate Sample for Analysis Yes Temp Taken From Temp Blank Yes Sample Custody Seals Present Yes Temp Taken From Sample Container No Samples Missing from COC/Cooler No Temp Taken From Cooler No	•			
Labels Complete Yes Rush to meet HT No COC Complete Yes Received within HT Yes Volatile Vial Headspace >6mm No Proper Containers for Analysis Yes Field Sheet/Instructions Included No Correct Preservation Yes Samples Rejected/Documented in Log No Adequate Sample for Analysis Yes Temp Taken From Temp Blank Yes Sample Custody Seals Present Yes Temp Taken From Sample Container No Samples Missing from COC/Cooler No Temp Taken From Cooler No			•	
COC Complete Yes Received within HT Yes Volatile Vial Headspace >6mm No Proper Containers for Analysis Yes Field Sheet/Instructions Included No Correct Preservation Yes Samples Rejected/Documented in Log No Adequate Sample for Analysis Yes Temp Taken From Temp Blank Yes Sample Custody Seals Present Yes Temp Taken From Sample Container No Samples Missing from COC/Cooler No Temp Taken From Cooler No				
Volatile Vial Headspace >6mm No Proper Containers for Analysis Yes Field Sheet/Instructions Included No Correct Preservation Yes Samples Rejected/Documented in Log No Adequate Sample for Analysis Yes Temp Taken From Temp Blank Yes Sample Custody Seals Present Yes Temp Taken From Sample Container No Samples Missing from COC/Cooler No				
Field Sheet/Instructions Included No Correct Preservation Yes Samples Rejected/Documented in Log No Adequate Sample for Analysis Yes Temp Taken From Temp Blank Yes Sample Custody Seals Present Yes Temp Taken From Sample Container No Samples Missing from COC/Cooler No Temp Taken From Cooler No				
Samples Rejected/Documented in Log No Adequate Sample for Analysis Yes Temp Taken From Temp Blank Yes Sample Custody Seals Present Yes Temp Taken From Sample Container No Samples Missing from COC/Cooler No Temp Taken From Cooler No	·		•	
Temp Taken From Temp BlankYesSample Custody Seals PresentYesTemp Taken From Sample ContainerNoSamples Missing from COC/CoolerNoTemp Taken From CoolerNo			***************************************	
Temp Taken From Sample ContainerNoSamples Missing from COC/CoolerNoTemp Taken From CoolerNo	, ,	No		Yes
Temp Taken From Cooler No	Temp Taken From Temp Blank	Yes	Sample Custody Seals Present	Yes
	Temp Taken From Sample Container	No	Samples Missing from COC/Cooler	No
COC meets acceptance criteria Yes	Temp Taken From Cooler	No		
	COC meets acceptance criteria	Yes		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

Choctaw Generation LP Project: CGLP CCR Semi Annual

2391 Pensacola Rd. Project Number: Annual Reported:
Ackerman MS, 39735 Project Manager: Jim Ward 01/18/2022 07:58

		5	V
Cooler Custody Seals Present	Yes	Received on Ice but Not Frozen	Yes
Containers Intact	Yes	No Ice, Short Trip	No
COC/Labels Agree	Yes	Obvious Contamination	No
Labels Complete	Yes	Rush to meet HT	No
COC Complete	Yes	Received within HT	Yes
Volatile Vial Headspace >6mm	No	Proper Containers for Analysis	Yes
Field Sheet/Instructions Included	No	Correct Preservation	Yes
Samples Rejected/Documented in Log	No	Adequate Sample for Analysis	Yes
Temp Taken From Temp Blank	Yes	Sample Custody Seals Present	Yes
Temp Taken From Sample Container	No	Samples Missing from COC/Cooler	No
Temp Taken From Cooler	No		
COC meets acceptance criteria	Yes		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

Choctaw Generation LP Project: CGLP CCR Semi Annual

2391 Pensacola Rd. Project Number: Annual Reported:
Ackerman MS, 39735 Project Manager: Jim Ward 01/18/2022 07:58

CASE NARRATIVE SUMMARY

All reported results are within Micro-Methods Laboratory, Inc.defined laboratory quality control objectives unless detailed in narrative summary or identified as qualifications. NOTE: All results listed on this report are calculated on a wet weight basis (as received by the laboratory) unless otherwise noted in the analysis qualification sections.

Summary Comments:

See attached Radiological results from Sub-Contract Laboratory.

REVISED REPORT-1/17/2022-SCH:

CAR#M011722-01: Lithium results were corrected for Calcium interference and a revised report issued.

Qualification: No Data Qualification

Analyte & Samples(s) Qualified: None

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

Choctaw Generation LP

Project: CGLP CCR Semi Annual

2391 Pensacola Rd. Ackerman MS, 39735 Project Number: Annual
Project Manager: Jim Ward

Reported: 01/18/2022 07:58

MW-7

2105488-01 (Water)

				.,	,					
Analyte	Result	MRL	Units	Dil	Batch	Analyst	Date Time Prepared	Date Time Analyzed	Method	Notes
Classical Chemistry Paramete	rs									
Fluoride	0.22	0.22	mg/L	1.0	1F0207′	1 CDV	06/02/2021 11:50	06/02/2021 15:28	SM 4500-F C 2011	
Metals by EPA 200 Series Metl	nods ICP-AES									
Barium 455.403 [Radial]	0.073	0.010	mg/L	1.0	1F01032	2 CLV	06/01/2021 09:25	06/10/2021 12:36	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	ND	0.050	"	"	"	CLV			"	
Calcium 315.887 [Radial]	32.0	0.050	"	"	"	CLV			"	
Lithium 610.362 [Axial]	ND	0.040	"	"	"	CLV			"	
Metals by EPA 200 Series Metl	hods ICP-MS	[Analysis N	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	1F0103	1 SCH	"	06/07/2021 12:04	EPA 200.8 Rev 5.4	
Arsenic [He]	ND	0.00200	"	"	"	SCH			"	
Barium [He]	0.0718	0.00100	"	"	"	SCH			"	
Beryllium [He]	ND	0.00100	"	"	"	SCH			"	
Cadmium [He]	ND	0.00100	"	"	"	SCH			"	
Chromium [He]	ND	0.00100	"	"		SCH			•	
Cobalt [He]	ND	0.00100	"	"	"	SCH			"	
Lead [He]	ND	0.00100	"	"	"	SCH			•	
Molybdenum [He]	ND	0.00100	"	"	"	SCH			"	
Selenium [He]	ND	0.00100		"	"	SCH			•	
Thallium [He]	ND	0.00500		"	"	SCH				
Mercury by EPA 200 Series Me	thods CVAAS	S								
Mercury	ND	0.002	mg/L	1.0	1F03042	2 JTR	06/02/2021 10:00	06/04/2021 15:03	EPA 245.1 Rev 3.0	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

Choctaw Generation LP

Project: CGLP CCR Semi Annual

2391 Pensacola Rd. Ackerman MS, 39735 Project Number: Annual
Project Manager: Jim Ward

Reported: 01/18/2022 07:58

MW-9

2105488-02 (Water)

Analyte	Result	MRL	Units	Dil	Batch	Analyst	Date Time Prepared	Date Time Analyzed	Method	Notes
Classical Chemistry Paramete	ers									
Fluoride	0.51	0.22	mg/L	1.0	1F0207	1 CDV	06/02/2021 11:50	06/02/2021 15:28	SM 4500-F C 2011	
Metals by EPA 200 Series Met	hods ICP-AES									
3arium 455.403 [Radial]	0.090	0.010	mg/L	1.0	1F01032	2 CLV	06/01/2021 09:25	06/10/2021 12:47	EPA 200.7 Rev 4.4	
30ron 249.773 [Radial]	ND	0.050	"		"	CLV			"	
Calcium 315.887 [Radial]	61.7	0.100	"	2.0	· ·	CLV	"	06/11/2021 15:18	"	
ithium 610.362 [Axial]	0.075	0.040	"	1.0	"	CLV		06/10/2021 12:47	"	
Metals by EPA 200 Series Met	hods ICP-MS	Analysis N	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	1F0103	1 SCH		06/07/2021 12:25	EPA 200.8 Rev 5.4	
Arsenic [He]	ND	0.00200	"	"	"	SCH				
Barium [He]	0.0898	0.00100	"	"	"	SCH			"	
Beryllium [He]	0.00491	0.00100	"	"	"	SCH			"	
Cadmium [He]	ND	0.00100	"	"	"	SCH			"	
Chromium [He]	ND	0.00100	"	"	"	SCH			"	
Cobalt [He]	0.0209	0.00100	"	"	"	SCH			"	
Lead [He]	0.00111	0.00100	"	"	"	SCH			"	
Molybdenum [He]	ND	0.00100	"	"	"	SCH			"	
Selenium [He]	0.00453	0.00100	"	"	"	SCH			"	
гhallium [He]	ND	0.00500	"	"	"	SCH			"	
Mercury by EPA 200 Series Me	ethods CVAAS	;								
Mercury	ND	0.002	mg/L	1.0	1F03042	2 JTR	06/02/2021 10:00	06/04/2021 15:03	EPA 245.1 Rev 3.0	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

Choctaw Generation LP

Project: CGLP CCR Semi Annual

2391 Pensacola Rd. Ackerman MS, 39735 Project Number: Annual
Project Manager: Jim Ward

Reported: 01/18/2022 07:58

MW-12

2105488-03 (Water)

Analyte	Result	MRL	Units	Dil	Batch	Analyst	Date Time Prepared	Date Time Analyzed	Method	Notes
Classical Chemistry Parame	ters									
Fluoride	ND	0.22	mg/L	1.0	1F0207	1 CDV	06/02/2021 11:50	06/02/2021 15:28	SM 4500-F C 2011	
Metals by EPA 200 Series Me	ethods ICP-AES									
Barium 455.403 [Radial]	0.210	0.010	mg/L	1.0	1F01032	2 CLV	06/01/2021 09:25	06/10/2021 12:50	EPA 200.7 Rev 4.4	
30ron 249.773 [Radial]	ND	0.050	"	"	"	CLV			"	
Calcium 315.887 [Radial]	32.1	0.050	"	"	"	CLV			н	
_ithium 610.362 [Axial]	ND	0.040	"	"	"	CLV				
Metals by EPA 200 Series Me	ethods ICP-MS	Analysis N	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	1F0103	I SCH	"	06/07/2021 12:31	EPA 200.8 Rev 5.4	
Arsenic [He]	ND	0.00200	"	"	"	SCH				
Barium [He]	0.210	0.00100	"	"	"	SCH			u u	
Beryllium [He]	ND	0.00100	"	"	"	SCH			"	
Cadmium [He]	ND	0.00100	"		"	SCH			"	
Chromium [He]	ND	0.00100	"	"	"	SCH				
Cobalt [He]	0.0220	0.00100	"	"	"	SCH			"	
_ead [He]	ND	0.00100	"	"	"	SCH			"	
Molybdenum [He]	ND	0.00100	"	"	"	SCH				
Selenium [He]	ND	0.00100	"	"	"	SCH				
「hallium [He]	ND	0.00500	"	"		SCH				
Mercury by EPA 200 Series M	Methods CVAAS	;								
Mercury	ND	0.002	mg/L	1.0	1F03042	2 JTR	06/02/2021 10:00	06/04/2021 15:03	EPA 245.1 Rev 3.0	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

Choctaw Generation LP

Project: CGLP CCR Semi Annual

2391 Pensacola Rd. Ackerman MS, 39735 Project Number: Annual
Project Manager: Jim Ward

Reported: 01/18/2022 07:58

MW-13

2105488-04 (Water)

				.,						
Analyta	Result	MRL	Units	Dil	Batch	Analyst	Date Time Prepared	Date Time Analyzed	Method	Notes
Analyte		IVIIXL	Ullita	ווט	Daton /	miaiyət	- Toparou		Metriod	Notes
Classical Chemistry Paramete										
Fluoride	ND	0.22	mg/L	1.0	1F02071	I CDV	06/02/2021 11:50	06/02/2021 15:28	SM 4500-F C 2011	
Metals by EPA 200 Series Met	hods ICP-AES	;							2011	
Barium 455.403 [Radial]	0.173	0.010	mg/L	1.0	1F01032	2 CLV	06/01/2021 09:25	06/10/2021 12:54	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	ND	0.050	"	"	"	CLV			"	
Calcium 315.887 [Radial]	20.0	0.050	"	"	"	CLV			"	
Lithium 610.362 [Axial]	ND	0.040	"	"	"	CLV			"	
Metals by EPA 200 Series Met	hods ICP-MS	[Analysis N	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	1F01031	SCH		06/07/2021 12:38	EPA 200.8 Rev 5.4	
Arsenic [He]	ND	0.00200	"	"	"	SCH		•	"	
Barium [He]	0.168	0.00100	"	"	"	SCH			"	
Cadmium [He]	ND	0.00100	"	"	"	SCH			"	
Chromium [He]	ND	0.00100	"	"	"	SCH			"	
Cobalt [He]	ND	0.00100	"	"	"	SCH			"	
Lead [He]	ND	0.00100	"	"	"	SCH			"	
Molybdenum [He]	ND	0.00100	"	"	"	SCH			"	
Selenium [He]	ND	0.00100	"	"	"	SCH			"	
Thallium [He]	ND	0.00500	"	"	"	SCH			"	
Mercury by EPA 200 Series Me	ethods CVAAS	3								
Mercury	ND	0.002	mg/L	1.0	1F03042	2 JTR	06/02/2021 10:00	06/04/2021 15:03	EPA 245.1 Rev 3.0	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

Choctaw Generation LP

Project: CGLP CCR Semi Annual

2391 Pensacola Rd. Ackerman MS, 39735 Project Number: Annual
Project Manager: Jim Ward

Reported: 01/18/2022 07:58

MW-14

2105488-05 (Water)

			21007	1) CU-884	vatery		Dete	Dete		
							Date Time	Date Time		
Analyte	Result	MRL	Units	Dil	Batch A	nalyst	Prepared	Analyzed	Method	Notes
Classical Chemistry Parame	eters									
Fluoride	ND	0.22	mg/L	1.0	1F02071	CDV	06/02/2021 11:50	06/02/2021 15:28	SM 4500-F C 2011	
Metals by EPA 200 Series M	ethods ICP-AES									
Barium 455.403 [Radial]	0.013	0.010	mg/L	1.0	1F01032	CLV	06/01/2021 09:25	06/10/2021 12:57	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	ND	0.050	"	"	"	CLV			"	
Calcium 315.887 [Radial]	0.643	0.050	"	"	·	CLV			"	
Lithium 610.362 [Axial]	ND	0.040	"		"	CLV			"	
Metals by EPA 200 Series M	ethods ICP-MS	Analysis N	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	1F01031	SCH		06/07/2021 12:45	EPA 200.8 Rev 5.4	
Arsenic [He]	ND	0.00200	"	"	"	SCH			"	
Barium [He]	0.0128	0.00100	"	"	"	SCH			"	
Beryllium [He]	ND	0.00100	"	"	"	SCH			"	
Cadmium [He]	ND	0.00100	"	"	"	SCH			"	
Chromium [He]	ND	0.00100	"	"	"	SCH			"	
Cobalt [He]	ND	0.00100	"	"	"	SCH			"	
Lead [He]	ND	0.00100	"	"	"	SCH			"	
Molybdenum [He]	ND	0.00100	"	"	"	SCH			"	
Selenium [He]	ND	0.00100	"	"	"	SCH			"	
гhallium [He]	ND	0.00500	"	"	"	SCH			"	
Mercury by EPA 200 Series	Methods CVAAS	}								
Mercury	ND	0.002	mg/L	1.0	1F03042	JTR	06/02/2021 10:00	06/04/2021 15:03	EPA 245.1 Rev 3.0	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

Choctaw Generation LP Project: CGLP CCR Semi Annual

2391 Pensacola Rd. Project Number: Annual Reported:
Ackerman MS, 39735 Project Manager: Jim Ward 01/18/2022 07:58

Field Blank

2105488-06 (Water)

Analyte	Result	MRL	Units	Dil	Batch A	ınalyst	Date Time Prepared	Date Time Analyzed	Method	Notes
Classical Chemistry Parame	eters									
Fluoride	ND	0.22	mg/L	1.0	1F02071	CDV	06/02/2021 11:50	06/02/2021 15:28	SM 4500-F C 2011	
Metals by EPA 200 Series M	ethods ICP-AES									
Barium 455.403 [Radial]	ND	0.010	mg/L	1.0	1F01032	CLV	06/01/2021 09:25	06/10/2021 13:08	EPA 200.7 Rev 4.4	
3 Boron 249.773 [Radial]	ND	0.050	"	"	"	CLV			"	
Calcium 315.887 [Radial]	0.288	0.050	"	"	"	CLV			"	
ithium 610.362 [Axial]	ND	0.040	"	"	"	CLV				
Metals by EPA 200 Series M	ethods ICP-MS	Analysis M	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	1F01031	SCH	"	06/07/2021 13:05	EPA 200.8 Rev 5.4	
Arsenic [He]	ND	0.00200	"	"	"	SCH				
Barium [He]	ND	0.00100	"	"	"	SCH			"	
Beryllium [He]	ND	0.00100	"	"	"	SCH			"	
Cadmium [He]	ND	0.00100	"	"	"	SCH			"	
Chromium [He]	ND	0.00100	"	"	"	SCH			"	
Cobalt [He]	ND	0.00100	"	"		SCH			"	
∟ead [He]	ND	0.00100	"	"		SCH			"	
Molybdenum [He]	ND	0.00100	"	"		SCH			"	
Selenium [He]	ND	0.00100	"	"		SCH				
hallium [He]	ND	0.00500	"		"	SCH			"	
Mercury by EPA 200 Series	Methods CVAAS	3								
Mercury	ND	0.002	mg/L	1.0	1F03042	JTR	06/02/2021 10:00	06/04/2021 15:03	EPA 245.1 Rev 3.0	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

6500 Sunplex Drive Ocean Springs, MS 39564 228-875-6420 Phone

228-875-6423 Fax

Choctaw Generation LP

Project: CGLP CCR Semi Annual

2391 Pensacola Rd. Ackerman MS, 39735

Project Number: Annual Project Manager: Jim Ward

Reported: 01/18/2022 07:58

Duplicate

2105488-07 (Water)

Analyte	Result	MRL	Units	Dil	Batch	Analyst	Date Time Prepared	Date Time Analyzed	Method	Notes
Classical Chemistry Paramete	ers									
Fluoride	ND	0.22	mg/L	1.0	1F0207′	1 CDV	06/02/2021 11:50	06/02/2021 15:28	SM 4500-F C 2011	
Metals by EPA 200 Series Met	hods ICP-AES	1								
Barium 455.403 [Radial]	0.013	0.010	mg/L	1.0	1F01032	2 CLV	06/01/2021 09:25	06/10/2021 13:12	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	ND	0.050	"		"	CLV			"	
Calcium 315.887 [Radial]	0.635	0.050	"	"	"	CLV			"	
_ithium 610.362 [Axial]	ND	0.040	"	"	"	CLV			"	
Metals by EPA 200 Series Met	hods ICP-MS	[Analysis N	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	1F0103	1 SCH		06/07/2021 13:11	EPA 200.8 Rev 5.4	
Arsenic [He]	ND	0.00200	"	"	"	SCH			"	
Barium [He]	0.0129	0.00100	"	"	"	SCH			"	
Beryllium [He]	ND	0.00100	"	"	"	SCH			"	
Cadmium [He]	ND	0.00100	"	"	"	SCH			"	
Chromium [He]	ND	0.00100	"	"	"	SCH			"	
Cobalt [He]	ND	0.00100	"	"	"	SCH			"	
∟ead [He]	ND	0.00100	"	"	"	SCH			•	
Molybdenum [He]	ND	0.00100	"	"	"	SCH			"	
Selenium [He]	ND	0.00100		"	"	SCH			•	
Гhallium [He]	ND	0.00500		"	"	SCH				
Mercury by EPA 200 Series Me	ethods CVAAS	S								
Mercury	ND	0.002	mg/L	1.0	1F03042	2 JTR	06/02/2021 10:00	06/04/2021 15:03	EPA 245.1 Rev 3.0	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

Choctaw Generation LP

Project: CGLP CCR Semi Annual

2391 Pensacola Rd. Ackerman MS, 39735 Project Number: Annual
Project Manager: Jim Ward

Reported: 01/18/2022 07:58

OW-2

2105488-08 (Water)

Analyte	Result	MRL	Units	Dil	Batch	Analyst	Date Time Prepared	Date Time Analyzed	Method	Notes
Classical Chemistry Parame	eters									
Fluoride	0.23	0.22	mg/L	1.0	1F0207′	1 CDV	06/02/2021 11:50	06/02/2021 15:28	SM 4500-F C 2011	
Metals by EPA 200 Series M	ethods ICP-AES									
Barium 455.403 [Radial]	0.058	0.010	mg/L	1.0	1F01032	2 CLV	06/01/2021 09:25	06/10/2021 13:16	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	ND	0.050	"	"	"	CLV			"	
Calcium 315.887 [Radial]	33.5	0.050	"	"	"	CLV			"	
Lithium 610.362 [Axial]	ND	0.040	"	"	"	CLV		"	•	
Metals by EPA 200 Series M	ethods ICP-MS	[Analysis N	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	1F0103	I SCH	"	06/07/2021 13:18	EPA 200.8 Rev 5.4	
Arsenic [He]	ND	0.00200	"	"	"	SCH			"	
Barium [He]	0.0575	0.00100	"	"	"	SCH			"	
Beryllium [He]	ND	0.00100	"	"	"	SCH			"	
Cadmium [He]	ND	0.00100	"		"	SCH			"	
Chromium [He]	ND	0.00100	"	"	"	SCH			"	
Cobalt [He]	ND	0.00100	"	"	"	SCH			"	
_ead [He]	ND	0.00100	"		"	SCH			•	
Molybdenum [He]	ND	0.00100		"	"	SCH				
Selenium [He]	ND	0.00100		"	"	SCH			•	
гhallium [He]	ND	0.00500	"	"	"	SCH			"	
Mercury by EPA 200 Series	Methods CVAAS	S								
Mercury	ND	0.002	mg/L	1.0	1F03042	2 JTR	06/02/2021 10:00	06/04/2021 15:03	EPA 245.1 Rev 3.0	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

Choctaw Generation LP Project: CGLP CCR Semi Annual

2391 Pensacola Rd. Project Number: Annual Reported:
Ackerman MS, 39735 Project Manager: Jim Ward 01/18/2022 07:58

CCR-2

2105488-09 (Water)

				1) 60-00	,					
Analyte	Result	MRL	Units	Dil	Batch	Analyst	Date Time Prepared	Date Time Analyzed	Method	Notes
Classical Chemistry Paramet							•		Motriou	110100
Fluoride	ND ND	0.22	mg/L	1.0	1F02071	1 CDV	06/02/2021 11:50	06/02/2021 15:28	SM 4500-F C 2011	
Metals by EPA 200 Series Me	thods ICP-AES	}					11.00		2011	
Barium 455.403 [Radial]	0.111	0.010	mg/L	1.0	1F01032	2 CLV	06/01/2021 09:25	06/10/2021 13:38	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	ND	0.050	"	"		CLV		"	"	
Calcium 315.887 [Radial]	14.0	0.050	"	"		CLV			"	
Lithium 610.362 [Axial]	ND	0.040	"	"	"	CLV			•	
Metals by EPA 200 Series Me	thods ICP-MS	Analysis M	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	1F01031	I SCH	"	06/07/2021 13:25	EPA 200.8 Rev 5.4	
Arsenic [He]	ND	0.00200	"	"	"	SCH			•	
Barium [He]	0.110	0.00100	"	"	"	SCH			"	
Beryllium [He]	ND	0.00100	"	"		SCH		"	"	
Cadmium [He]	ND	0.00100	"	"	"	SCH			"	
Chromium [He]	ND	0.00100	"	"	"	SCH			"	
Cobalt [He]	ND	0.00100	"	"		SCH			"	
∟ead [He]	ND	0.00100	"	"	"	SCH			"	
Molybdenum [He]	ND	0.00100	"	"		SCH			•	
Selenium [He]	ND	0.00100		"	"	SCH			•	
гhallium [He]	ND	0.00500	"			SCH			"	
Mercury by EPA 200 Series N	lethods CVAAS	3								
Mercury	ND	0.002	mg/L	1.0	1F03042	2 JTR	06/02/2021 10:00	06/04/2021 15:03	EPA 245.1 Rev 3.0	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

6500 Sunplex Drive Ocean Springs, MS 39564 228-875-6420 Phone

228-87<u>5-64</u>23 Fax

Choctaw Generation LP 2391 Pensacola Rd.

Ackerman MS, 39735

Project: CGLP CCR Semi Annual

Project Number: Annual Project Manager: Jim Ward

Reported: 01/18/2022 07:58

CCR-3

2105488-10 (Water)

			21007	88-10 (\	rvater)					
	5 "	MDI		Б.:	5		Date Time	Date Time		
Analyte	Result	MRL	Units	Dil	Batch A	nalyst	Prepared	Analyzed	Method	Notes
Classical Chemistry Parame	ters									
Fluoride	0.22	0.22	mg/L	1.0	1F02071	CDV	06/02/2021 11:50	06/02/2021 15:28	SM 4500-F C 2011	
Metals by EPA 200 Series Me	thods ICP-AES									
Barium 455.403 [Radial]	0.072	0.010	mg/L	1.0	1F01032	CLV	06/01/2021 09:25	06/10/2021 13:41	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	ND	0.050	"	"	"	CLV	*		"	
Calcium 315.887 [Radial]	37.1	0.050	"	"	"	CLV		"	"	
Lithium 610.362 [Axial]	0.107	0.040	"	"	"	CLV			"	
Metals by EPA 200 Series Me	ethods ICP-MS	Analysis N	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	1F01031	SCH		06/07/2021 13:44	EPA 200.8 Rev 5.4	
Arsenic [He]	ND	0.00200	"	"	"	SCH			m .	
Barium [He]	0.0737	0.00100	"	"	"	SCH			"	
Beryllium [He]	ND	0.00100	"	"	"	SCH			"	
Cadmium [He]	ND	0.00100	"	"	"	SCH			m .	
Chromium [He]	ND	0.00100	"	"		SCH			m .	
Cobalt [He]	0.0163	0.00100	"	"	"	SCH				
_ead [He]	ND	0.00100	"	"	"	SCH			m .	
Molybdenum [He]	ND	0.00100	"	"	"	SCH			m .	
Selenium [He]	ND	0.00100	"	"	"	SCH			m .	
Гhallium [He]	ND	0.00500	"	"	"	SCH			"	
Mercury by EPA 200 Series M	Methods CVAAS	}								
Mercury	ND	0.002	mg/L	1.0	1F03042	JTR	06/02/2021 10:00	06/04/2021 15:03	EPA 245.1 Rev 3.0	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

Choctaw Generation LP

Project: CGLP CCR Semi Annual

2391 Pensacola Rd. Ackerman MS, 39735 Project Number: Annual
Project Manager: Jim Ward

Reported: 01/18/2022 07:58

CCR-4

2105488-11 (Water)

					,					
Analyte	Result	MRL	Units	Dil	Batch	Analyst	Date Time Prepared	Date Time Analyzed	Method	Notes
Classical Chemistry Parameter	's									
Fluoride	ND	0.22	mg/L	1.0	1F0207	1 CDV	06/02/2021 11:50	06/02/2021 15:28	SM 4500-F C 2011	
Metals by EPA 200 Series Meth	ods ICP-AES									
Barium 455.403 [Radial]	0.156	0.010	mg/L	1.0	1F01032	2 CLV	06/01/2021 09:25	06/10/2021 13:45	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	ND	0.050	"	"	"	CLV				
Calcium 315.887 [Radial]	24.5	0.050	"	"	"	CLV			"	
Lithium 610.362 [Axial]	ND	0.040	"	"	"	CLV		•	"	
Metals by EPA 200 Series Meth	ods ICP-MS [Analysis N	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	1F0103	1 SCH		06/07/2021 13:51	EPA 200.8 Rev 5.4	
Arsenic [He]	ND	0.00200	"	"	"	SCH			"	
Barium [He]	0.158	0.00100	"	"	"	SCH			"	
Beryllium [He]	ND	0.00100	"	"	"	SCH			•	
Cadmium [He]	ND	0.00100	"	"	"	SCH			"	
Chromium [He]	ND	0.00100	"	"	"	SCH			"	
Cobalt [He]	0.00233	0.00100	"	"	"	SCH			"	
Lead [He]	ND	0.00100	"	"	"	SCH			"	
Molybdenum [He]	ND	0.00100	"	"	"	SCH			"	
Selenium [He]	ND	0.00100	"	"	"	SCH			"	
Гhallium [He]	ND	0.00500	"	"		SCH			"	
Mercury by EPA 200 Series Me	thods CVAAS	}								
Mercury	ND	0.002	mg/L	1.0	1F03042	2 JTR	06/02/2021 10:00	06/04/2021 15:03	EPA 245.1 Rev 3.0	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

Choctaw Generation LP

Project: CGLP CCR Semi Annual

2391 Pensacola Rd. Ackerman MS, 39735 Project Number: Annual
Project Manager: Jim Ward

Reported: 01/18/2022 07:58

CCR-5

2105488-12 (Water)

				100-12 (1	, ,					
Analyte	Result	MRL	Units	Dil	Batch	Analyst	Date Time Prepared	Date Time Analyzed	Method	Notes
Classical Chemistry Paramet	ers									
Fluoride	ND	0.22	mg/L	1.0	1F02071	CDV	06/02/2021 11:50	06/02/2021 15:28	SM 4500-F C 2011	
Metals by EPA 200 Series Me	thods ICP-AES									
Barium 455.403 [Radial]	0.036	0.010	mg/L	1.0	1F01032	2 CLV	06/01/2021 09:25	06/10/2021 13:49	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	0.091	0.050	"	"	"	CLV			•	
Calcium 315.887 [Radial]	112	0.250	"	5.0	"	CLV		06/11/2021 16:09	"	
Lithium 610.362 [Axial]	ND	0.040	"	1.0	"	CLV		06/10/2021 13:49	n	
Metals by EPA 200 Series Me	thods ICP-MS [Analysis N	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	1F01031	SCH		06/07/2021 13:58	EPA 200.8 Rev 5.4	
Arsenic [He]	0.00284	0.00200	"	"	"	SCH				
Barium [He]	0.0358	0.00100	"	"	"	SCH				
Beryllium [He]	ND	0.00100	"	"	"	SCH			"	
Cadmium [He]	ND	0.00100	"	"	"	SCH			m .	
Chromium [He]	ND	0.00100	"	"	"	SCH			n	
Cobalt [He]	0.0117	0.00100	"	"	"	SCH			"	
Lead [He]	ND	0.00100	"	"	"	SCH			n	
Molybdenum [He]	ND	0.00100	"	"	"	SCH			"	
Selenium [He]	0.00806	0.00100	"	"		SCH			"	
Thallium [He]	ND	0.00500	"	"	"	SCH			"	
Mercury by EPA 200 Series N	lethods CVAAS	;								
Mercury	ND	0.002	mg/L	1.0	1F03042	2 JTR	06/02/2021 10:00	06/04/2021 15:03	EPA 245.1 Rev 3.0	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

Choctaw Generation LP 2391 Pensacola Rd. Ackerman MS, 39735 Project: CGLP CCR Semi Annual

Project Number: Annual
Project Manager: Jim Ward

Reported: 01/18/2022 07:58

Classical Chemistry Parameters - Quality Control

Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Batch 1F02071 - Default Prep GenCher	m										
Blank (1F02071-BLK1)											
Fluoride	6/2/21 15:28	ND	0.22	mg/L							
LCS (1F02071-BS1)											
Fluoride	6/2/21 15:28	1.95	0.22	mg/L	2.00		97.5	83.3-107			
LCS Dup (1F02071-BSD1)											
Fluoride	6/2/21 15:28	1.99	0.22	mg/L	2.00		99.5	83.3-107	2.03	30	
Duplicate (1F02071-DUP1)			Source: 21054	88-05							
Fluoride	6/2/21 15:28	ND	0.22	mg/L		ND				20	
Matrix Spike (1F02071-MS1)			Source: 21054	88-05							
Fluoride	6/2/21 15:28	5.08	0.22	mg/L	5.00	ND	102	79.3-113			
Matrix Spike Dup (1F02071-MSD1)			Source: 21054	88-05							
Fluoride	6/2/21 15:28	5.14	0.22	mg/L	5.00	ND	103	79.3-113	1.17	30	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

Choctaw Generation LP 2391 Pensacola Rd. Ackerman MS, 39735 Project: CGLP CCR Semi Annual

Project Number: Annual
Project Manager: Jim Ward

Reported: 01/18/2022 07:58

Metals by EPA 200 Series Methods ICP-AES - Quality Control

Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Batch 1F01032 - EPA 200.2 DCN 10	117 Rev 10										
Blank (1F01032-BLK1)											
Barium 455.403 [Radial]	6/10/21 12:25	ND	0.010	mg/L							
Boron 249.773 [Radial]	6/10/21 12:25	ND	0.050								
Calcium 315.887 [Radial]	6/10/21 12:25	ND	0.050								
_ithium 610.362 [Axial]	6/10/21 12:25	ND	0.040								
_CS (1F01032-BS1)											
Barium 455.403 [Radial]	6/10/21 12:28	0.211	0.010	mg/L	0.200		105	85-115			
Boron 249.773 [Radial]	6/10/21 12:28	0.209	0.050		0.200		104	85-115			
Calcium 315.887 [Radial]	6/10/21 12:28	0.399	0.050		0.400		99.8	85-115			
_ithium 610.362 [Axial]	6/10/21 12:28	0.196	0.040		0.200		98.2	85-115			
.CS Dup (1F01032-BSD1)											
Barium 455.403 [Radial]	6/10/21 12:32	0.203	0.010	mg/L	0.200		101	85-115	3.87	20	
Boron 249.773 [Radial]	6/10/21 12:32	0.205	0.050		0.200		103	85-115	1.45	20	
Calcium 315.887 [Radial]	6/10/21 12:32	0.391	0.050		0.400		97.8	85-115	2.09	20	
ithium 610.362 [Axial]	6/10/21 12:32	0.194	0.040		0.200		96.9	85-115	1.30	20	
Ouplicate (1F01032-DUP1)			Source: 21054	88-01							
Calcium 315.887 [Radial]	6/10/21 12:39	32.9	0.050	mg/L		32.0			2.59	20	
Matrix Spike (1F01032-MS1)			Source: 21054	88-05							
Barium 455.403 [Radial]	6/10/21 13:01	0.213	0.010	mg/L	0.200	0.013	100	70-130			
Boron 249.773 [Radial]	6/10/21 13:01	0.207	0.050		0.200	ND	103	70-130			
Calcium 315.887 [Radial]	6/10/21 13:01	1.02	0.050		0.400	0.643	95.4	70-130			
ithium 610.362 [Axial]	6/10/21 13:01	0.203	0.040		0.200	ND	102	70-130			
Matrix Spike (1F01032-MS2)			Source: 21054	88-01							
Barium 455.403 [Radial]	6/10/21 12:39	0.276	0.010	mg/L	0.200	0.073	102	70-130			
3oron 249.773 [Radial]	6/10/21 12:39	0.217	0.050		0.200	0.009	104	70-130			
ithium 610.362 [Axial]	6/10/21 12:39	0.225	0.040		0.200	0.021	102	70-130			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

Choctaw Generation LP Project: CGLP CCR Semi Annual

2391 Pensacola Rd. Project Number: Annual Ackerman MS, 39735 Project Manager: Jim Ward

Reported: 01/18/2022 07:58

Metals by EPA 200 Series Methods ICP-AES - Quality Control

Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Batch 1F01032 - EPA 200.2 DCN 1	1017 Rev 10										
Matrix Spike Dup (1F01032-MSD1)		Source: 21054	88-05							
Barium 455.403 [Radial]	6/10/21 13:05	0.217	0.010	mg/L	0.200	0.013	102	70-130	1.91	20	
Boron 249.773 [Radial]	6/10/21 13:05	0.208	0.050		0.200	ND	104	70-130	0.783	20	
Calcium 315.887 [Radial]	6/10/21 13:05	1.04	0.050		0.400	0.643	99.2	70-130	1.48	20	
Lithium 610.362 [Axial]	6/10/21 13:05	0.206	0.040		0.200	ND	103	70-130	1.13	20	
Matrix Spike Dup (1F01032-MSD2	2)		Source: 21054	88-01							
Barium 455.403 [Radial]	6/10/21 12:43	0.276	0.010	mg/L	0.200	0.073	102	70-130	0.000833	20	
Boron 249.773 [Radial]	6/10/21 12:43	0.217	0.050		0.200	0.009	104	70-130	0.0760	20	
Lithium 610.362 [Axial]	6/10/21 12:43	0.224	0.040		0.200	0.021	101	70-130	0.382	20	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

Project: CGLP CCR Semi Annual

Choctaw Generation LP 2391 Pensacola Rd. Ackerman MS, 39735

Project Number: Annual
Project Manager: Jim Ward

Reported: 01/18/2022 07:58

Metals by EPA 200 Series Methods ICP-MS [Analysis Mode] - Quality Control

Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Batch 1F01031 - EPA 200.2 DCN 1	017 Rev 10										
Blank (1F01031-BLK1)											
Antimony [He]	6/7/21 11:38	ND	0.00200	mg/L							
Arsenic [He]	6/7/21 11:38	ND	0.00200								
Beryllium [He]	6/7/21 11:38	ND	0.00100								
Cadmium [He]	6/7/21 11:38	ND	0.00100								
Chromium [He]	6/7/21 11:38	ND	0.00100								
Cobalt [He]	6/7/21 11:38	ND	0.00100								
Lead [He]	6/7/21 11:38	ND	0.00100								
Molybdenum [He]	6/7/21 11:38	ND	0.00100								
Selenium [He]	6/7/21 11:38	ND	0.00100	"							
LCS (1F01031-BS1)											
Antimony [He]	6/7/21 11:45	0.099	0.00200	mg/L	0.100		99.5	85-115			
Arsenic [He]	6/7/21 11:45	0.098	0.00200		0.100		97.6	85-115			
Beryllium [He]	6/7/21 11:45	0.103	0.00100		0.100		103	85-115			
Cadmium [He]	6/7/21 11:45	0.097	0.00100		0.100		97.4	85-115			
Chromium [He]	6/7/21 11:45	0.096	0.00100		0.100		96.2	85-115			
Cobalt [He]	6/7/21 11:45	0.101	0.00100		0.100		101	85-115			
Lead [He]	6/7/21 11:45	0.095	0.00100		0.100		95.1	85-115			
Molybdenum [He]	6/7/21 11:45	0.091	0.00100		0.100		90.7	85-115			
Selenium [He]	6/7/21 11:45	0.097	0.00100	"	0.100		97.5	85-115			
LCS Dup (1F01031-BSD1)											
Antimony [He]	6/7/21 11:51	0.100	0.00200	mg/L	0.100		100	85-115	0.543	20	
Arsenic [He]	6/7/21 11:51	0.099	0.00200		0.100		98.7	85-115	1.13	20	
Beryllium [He]	6/7/21 11:51	0.105	0.00100		0.100		105	85-115	1.55	20	
Cadmium [He]	6/7/21 11:51	0.098	0.00100		0.100		97.9	85-115	0.576	20	
Chromium [He]	6/7/21 11:51	0.097	0.00100		0.100		96.8	85-115	0.527	20	
Cobalt [He]	6/7/21 11:51	0.101	0.00100		0.100		101	85-115	0.637	20	
Lead [He]	6/7/21 11:51	0.098	0.00100		0.100		97.8	85-115	2.81	20	
Molybdenum [He]	6/7/21 11:51	0.092	0.00100		0.100		92.2	85-115	1.65	20	
Selenium [He]	6/7/21 11:51	0.095	0.00100		0.100		94.8	85-115	2.76	20	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

Choctaw Generation LP 2391 Pensacola Rd. Ackerman MS, 39735 Project: CGLP CCR Semi Annual

Project Number: Annual Reported:
Project Manager: Jim Ward 01/18/2022 07:58

Metals by EPA 200 Series Methods ICP-MS [Analysis Mode] - Quality Control

Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Batch 1F01031 - EPA 200.2 DCN 10	17 Rev 10				_		_	_			
Matrix Spike (1F01031-MS1)			Source: 21054	88-01							
Antimony [He]	6/7/21 12:11	0.101	0.00200	mg/L	0.100	ND	101	70-130			
Arsenic [He]	6/7/21 12:11	0.100	0.00200		0.100	0.0002	99.5	70-130			
Beryllium [He]	6/7/21 12:11	0.101	0.00100		0.100	ND	101	70-130			
Cadmium [He]	6/7/21 12:11	0.095	0.00100		0.100	ND	95.4	70-130			
Chromium [He]	6/7/21 12:11	0.094	0.00100		0.100	ND	94.2	70-130			
Cobalt [He]	6/7/21 12:11	0.096	0.00100		0.100	0.0005	95.9	70-130			
Lead [He]	6/7/21 12:11	0.098	0.00100		0.100	ND	98.4	70-130			
Molybdenum [He]	6/7/21 12:11	0.098	0.00100		0.100	0.0002	97.4	70-130			
Selenium [He]	6/7/21 12:11	0.097	0.00100		0.100	ND	96.8	70-130			
Matrix Spike (1F01031-MS2)			Source: 21054	88-05							
Antimony [He]	6/7/21 12:52	0.103	0.00200	mg/L	0.100	ND	103	70-130			
Arsenic [He]	6/7/21 12:52	0.100	0.00200		0.100	ND	99.9	70-130			
Beryllium [He]	6/7/21 12:52	0.113	0.00100		0.100	ND	113	70-130			
Cadmium [He]	6/7/21 12:52	0.099	0.00100		0.100	ND	98.9	70-130			
Chromium [He]	6/7/21 12:52	0.101	0.00100		0.100	ND	101	70-130			
Cobalt [He]	6/7/21 12:52	0.106	0.00100		0.100	0.0008	105	70-130			
Lead [He]	6/7/21 12:52	0.102	0.00100		0.100	ND	102	70-130			
Molybdenum [He]	6/7/21 12:52	0.096	0.00100		0.100	ND	96.2	70-130			
Selenium [He]	6/7/21 12:52	0.099	0.00100		0.100	ND	99.2	70-130			
Matrix Spike Dup (1F01031-MSD1)			Source: 21054	88-01							
Antimony [He]	6/7/21 12:18	0.100	0.00200	mg/L	0.100	ND	99.6	70-130	1.27	20	
Arsenic [He]	6/7/21 12:18	0.099	0.00200		0.100	0.0002	98.3	70-130	1.21	20	
Beryllium [He]	6/7/21 12:18	0.103	0.00100		0.100	ND	103	70-130	2.06	20	
Cadmium [He]	6/7/21 12:18	0.095	0.00100		0.100	ND	94.5	70-130	0.915	20	
Chromium [He]	6/7/21 12:18	0.093	0.00100		0.100	ND	93.4	70-130	0.755	20	
Cobalt [He]	6/7/21 12:18	0.096	0.00100		0.100	0.0005	95.4	70-130	0.559	20	
_ead [He]	6/7/21 12:18	0.096	0.00100		0.100	ND	95.7	70-130	2.72	20	
Molybdenum [He]	6/7/21 12:18	0.096	0.00100		0.100	0.0002	96.2	70-130	1.30	20	
Selenium [He]	6/7/21 12:18	0.099	0.00100		0.100	ND	99.2	70-130	2.44	20	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

Choctaw Generation LP 2391 Pensacola Rd.

Ackerman MS, 39735

Project: CGLP CCR Semi Annual

Project Number: Annual
Project Manager: Jim Ward

Reported: 01/18/2022 07:58

Metals by EPA 200 Series Methods ICP-MS [Analysis Mode] - Quality Control

Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Batch 1F01031 - EPA 200.2 DCN	1017 Rev 10										
Matrix Spike Dup (1F01031-MSD2	2)		Source: 21054	88-05							
Antimony [He]	6/7/21 12:58	0.100	0.00200	mg/L	0.100	ND	100	70-130	2.85	20	
Arsenic [He]	6/7/21 12:58	0.097	0.00200		0.100	ND	97.2	70-130	2.80	20	
Beryllium [He]	6/7/21 12:58	0.108	0.00100		0.100	ND	108	70-130	4.70	20	
Cadmium [He]	6/7/21 12:58	0.097	0.00100		0.100	ND	96.7	70-130	2.32	20	
Chromium [He]	6/7/21 12:58	0.095	0.00100		0.100	ND	95.4	70-130	5.79	20	
Cobalt [He]	6/7/21 12:58	0.101	0.00100		0.100	0.0008	100	70-130	5.09	20	
Lead [He]	6/7/21 12:58	0.098	0.00100		0.100	ND	98.5	70-130	3.05	20	
Molybdenum [He]	6/7/21 12:58	0.095	0.00100		0.100	ND	94.6	70-130	1.68	20	
Selenium [He]	6/7/21 12:58	0.092	0.00100		0.100	ND	92.2	70-130	7.31	20	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

Choctaw Generation LP 2391 Pensacola Rd. Ackerman MS, 39735 Project: CGLP CCR Semi Annual

Project Number: Annual
Project Manager: Jim Ward

Reported: 01/18/2022 07:58

Mercury by EPA 200 Series Methods CVAAS - Quality Control

Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Batch 1F03042 - EPA 7470A DCN 1017	Rev 10										
Blank (1F03042-BLK1)											
Mercury	6/4/21 15:03	ND	0.002	mg/L							
LCS (1F03042-BS1)											
Mercury	6/4/21 15:03	0.005	0.002	mg/L	0.00500		102	85-115			
LCS Dup (1F03042-BSD1)											
Mercury	6/4/21 15:03	0.005	0.002	mg/L	0.00500		100	85-115	1.98	20	
Matrix Spike (1F03042-MS1)			Source: 21054	88-05							
Mercury	6/4/21 15:03	0.005	0.002	mg/L	0.00500	0.0005	90.0	70-130			
Matrix Spike (1F03042-MS2)			Source: 21054	88-01							
Mercury	6/4/21 15:03	0.005	0.002	mg/L	0.00500	ND	108	70-130			

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

Choctaw Generation LP Project: CGLP CCR Semi Annual

2391 Pensacola Rd. Project Number: Annual Reported:
Ackerman MS, 39735 Project Manager: Jim Ward 01/18/2022 07:58

Certified Analyses Included in this Report

Analyte	Certification Code
EPA 200.7 Rev 4.4 in Water	
Aluminum 237.312 [Radial]	C01,C02
Aluminum 394.401 [Radial]	C01,C02
Aluminum 396.152 [Radial]	C01,C02
Antimony 206.833 [Axial]	C01,C02
Arsenic 193.759 [Axial]	C01,C02
Barium 455.403 [Radial]	C01,C02
Barium 493.409 [Radial]	C01,C02
Beryllium 313.042 [Axial]	C01,C02
Boron 249.773 [Radial]	C01,C02
Cadmium 228.802 [Axial]	C01,C02
Calcium 315.887 [Radial]	C01,C02
Chromium 283.563 [Axial]	C01,C02
Cobalt 228.616 [Axial]	C01,C02
Copper 324.754 [Axial]	C01,C02
Iron 259.940 [Axial]	C01,C02
Iron 259.940 [Radial]	C01,C02
Lead 220.353 [Axial]	C01,C02
Lithium 610.362 [Axial]	C01,C02
Magnesium 285.213 [Radial]	C01,C02
Manganese 257.610 [Axial]	C01,C02
Molybdenum 202.030 [Axial]	C01,C02
Nickel 231.604 [Axial]	C01,C02
Potassium 766.490 [Radial]	C01,C02
Phosphorus 178.284 [Axial]	C01,C02
Phosphorus 178.284 [Radial]	C01,C02
Selenium 196.090 [Axial]	C01,C02
Silver 328.068 [Axial]	C01,C02
Sodium 589.592 [Axial]	C01,C02
Sodium 589.592 [Radial]	C01,C02
Strontium 346.446 [Radial]	C01,C02
Strontium 421.552 [Radial]	C01,C02
Thallium 190.856 [Axial]	C01,C02
Tin 189.989 [Axial]	C01,C02
Titanium 334.941 [Axial]	C01,C02
Vanadium 309.311 [Axial]	C01,C02
Zinc 213.856 [Axial]	C01,C02
EPA 200.8 Rev 5.4 in Water	
Aluminum [He]	C01,C02
Antimony [He]	C01,C02

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

Choctaw Generation LP	Project: CGLP CCR Semi Annual	
2391 Pensacola Rd.	Project Number: Annual	Reported:
Ackerman MS, 39735	Project Manager: Jim Ward	01/18/2022 07:58

Antimony [HHe]	C01,C02
Antimony [NG]	C01,C02
Arsenic [He]	C01
Arsenic [HHe]	C01,C02
Arsenic [NG]	C01,C02
Barium [He]	C01,C02
Beryllium [He]	C01,C02
Boron [NG]	C01,C02
Cadmium [He]	C01
Cadmium [HHe]	C01,C02
Cadmium [NG]	C01,C02
Chromium [He]	C01,C02
Cobalt [He]	C01,C02
Copper [He]	C01,C02
Copper [NG]	C01,C02
Iron [He]	C01,C02
Lead [He]	C01,C02
Lead [NG]	C01,C02
Manganese [He]	C01,C02
Molybdenum [He]	C01,C02
Nickel [He]	C01,C02
Selenium [He]	C01
Selenium [HHe]	C01,C02
Selenium [NG]	C01,C02
Silver [He]	C01,C02
Silver [NG]	C01,C02
Strontium [He]	C01,C02
Thallium [He]	C01,C02
Vanadium [He]	C01,C02
Zinc [He]	C01,C02

EPA 245.1 Rev 3.0 in Water

Mercury C01,C02

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

^{**}Only compounds included in this list are associated with accredited analyses**

Choctaw Generation LP 2391 Pensacola Rd. Ackerman MS, 39735 Project: CGLP CCR Semi Annual

Project Number: Annual
Project Manager: Jim Ward

Reported: 01/18/2022 07:58

Laboratory Accreditations/Certifications

Code	Description	Number	Expires
C01	LA Environmental Lab Accreditation Program	01960	06/30/2022
C02	The NELAC Institute (NELAP)	TNI01397	06/30/2022
C03	Ms Dept of Health (Drinking Water Microbiology)	MS00021	12/31/2022
C04	Ms Dept of Health (Drinking Water Chemistry)	MS00021	12/31/2022
C05	Ms DEQ Lead Firm Certification	PBF-00000028	03/24/2022
C06	MsDEQ Asbestos Inspector : C.D. Bingham	ABI-00001348	02/12/2022
C07	MsDEQ Air Monitor : C.D. Bingham	AM-011572	02/13/2022
C08	MsDEQ Asbestos Inspector: C. W. Meins	ABI-00001821	09/09/2022
C09	MsDEQ Air Monitor: C.W. Meins	AM-011189	02/13/2022
C14	MsDEQ Lead Paint Inspector : C.D. Bingham	PBI-00003690	03/24/2022
C15	MsDEQ Lead Paint Inspector : C.W. Meins	PBI-00001740	03/24/2022

Report Definitions

DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the minimum reporting limit
NR	Not Reported
RPD	Relative Percent Difference
ICV	Initial Calibration Verfiication
CCV	Continuing Calibration Verification Standard
SSV	Secondary Source Verfication Standard
LCS	Lab Control Spike - Lab matrix prepared with known concentration of analyte/s of interest analyzed by method.
MS	Matrix Spike - Sample prepared with known concentration of analyte/s of interest analyzed by method.
MSD	Matrix Spike Duplicate - Duplicate sample prepared with known concentration of anlayte/s of interest analyzed by method.
MRL	Minimum Reporting Limit
%REC	Percentage Recovery of known concentration added to matrix
Batch	Group of samples prepared for analysis not to exceed 20 samples.
Matrix	Material containing analyte/s of interest
Surrogate	Analyte added to sample to determine extraction efficiency of method.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

6500 Sunplex Drive Ocean Springs, MS 39564 228-875-6420 Phone 228-875-6423 Fax

Choctaw Generation LP Project: CGLP CCR Semi Annual

2391 Pensacola Rd. Project Number: Annual Reported:
Ackerman MS, 39735 Project Manager: Jim Ward 01/18/2022 07:58

<u>Initials</u>
CDV
CDB
CLV
HMS
JTR
SET
SCH
TKM
TPT

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

Revised Report

MICRO-METHODS

PO Box 1410, Ocean Springs, MS 39566-1410 (228) 875-6420 FAX (228) 875-6423

www.micromethodslab.com

Chain of Custody Record

Lab ID# MS00021 LELAP ID # 01960 TNI ID # TNI01397

> M-M Lab WO #

210548

Choctaw Generation Limited Partnership LLLP	ted Partnership LL		Project Manager:	jer:		Jim	Jim Ward			Turn A	Turn Around Time & Reporting	Reporting
Address: 2391 Pensacola Rd.	000	Purc	Purchase Order #	er#:						Our normal	Our normal turn around time is 10 working days	working days
City: Ackerman State: MS	Zip: 39735	Ema	Email Address	3.5	1600	omiroran net				ay*	requests must be	Mail
Phone: 662-387-5758		Sam	Sampler Name	Printed:	20	Clark				Other*	prior approved.	Email
. X		Sam	Sampler Name Signed	Signed'		11	(QC Level: Level 1	Level 2	eve 3
				List /	Analyse	List Analyses Requested	ested			Field Testing	esting	
Project Name: CGLP (CCR	Prese			it t	,		&		ID# ID#	ID# ID#	
Project #: Annual	ia	ontaine	osite (C	oride ny, Arseni Berrylliu	im, Coba	n, Mercun	enium Illium	dium 226 228			ton ton ton ton tent	DW = Drinking Water
Sample Identification	Sampling Matrix Date/Time Code		- 10	Antimor Barium			-					S = Solid SO = Soil
N/W-7	state 12:00			X	X	X	\times	X	+	7		St = Sediment L = Liquid
NW-9		W 4	6	X	X	X	X	X				A = Air
MW-12 S	5/26/21 10:05	4	ତ	X	\times	X	\times	×				SL = Sludge
MW-13	5/26/21 12:55	4	ତ	×	X	X	X	×				
MW-14-	S/26/21 10:55	4	2	X	\times	X	\times	×				
Field Blank	5/26/21 12:35	W 4	2	X	\times	X	X	×				Preservation:
Duplicate. 5	5/26/21	W 4	0	X	X	X	X X	\times				1= H2SO4
OW-2	5/24/21 9:25	W 4	0	X	X	X	X	×	2			3=NaOH
2	5/26/21 12:05 1	₩ 4	9	X	X X	X	X	\times				4=ZnC4H10O6
CCR-3	85:11 18	W 4	0	X	X	X	\times	×				5=ZnC4H10O6 &
Thomas	818 Ways	4		X	X	X	X	X				6=HNO3
o Tillonie	Cooler #	- F	Kec	Receipt Temp Corrected(°C	op Corr	ected(°C	-					/=Na252O3
Date & TimeBy:	0)		San	Sample	Blank	Coo	Cooler			**All Temps are Corrected Values**	ected Values**	9=NaHSO4
Printed Name	ne N	Sig	Signature		Cor	Company	Date		Time	Notes:		
Relinquished by	K	1	1/-	(b	67	CS	5/26/21	82/ IS	5:30	RT Hail	· / / .//	Cl ILA
Received by FOUTX	1								1	20, 5,	and the state of t	122
Relinquished by 10 FRAF	X : 1	1						9		assista	14h Jang	L'as Lout
Received by	mak x	Me	M/B	Mex		Z	在	TO TO	n		109 %	7.6
Relinquished by	9		C				5/2	121		COOKF# 6	080	しょし
Received by					1		+	-		COOK # 1	1150 5-	0

111

4 1 1

Physical Address: 6500 Sunplex Drive, Ocean Springs MS 39564

Print Form

2

PO Box 1410, Ocean Springs, MS 39566-1410 (228) 875-6420 FAX (228) 875-6423 www.micromethodslab.com

Chain of Custody Record

LELAP ID # 01960 TNI ID # TNI01397 Lab ID# MS00021

M-M Lab WO#

	Physical Address: 6500 Sunplex Drive, Ocean Springs MS 39564	DCN# F316 Rev.#5 Physical J
		Received by
		Relinquished by
	althornal, MM Spile 1033	Received by SWALT BULK SM
11.21.00		Relinquished by Feg TX
assisted with Sunday Event.		Received by Ratx
as Hilly & Kind Shilter	CLE &CS 5/16/21 15:30	Relinquished by Cam Clark
Notes:	Signature Company Date Time	Printed Name
All Temps are Corrected Values 9=NaHSO4	SampleBlankCooler	Date & Time By:
7=Na2S2O3	Receipt Temp Corrected(°C)	Received on Ice? Y N Thermometer#Cooler#_
6=HNO3		
NaOH		
4=ZnC4H1006 &		
3=NaOH		
2= H3PO4		
1= H2SO4		
Preservation:		
SL = Sludge		
0 = 0il		
A = Air		
L = Liquid		CCR-5 5/26/21 08:45 W
SO = Soil	Gral Conn F Anti Bari Cad Chi	Sample Identification Date/Time Code
S = Solid	morromium Sele	Sampling Matrix
	Ontain G) or orid orid	Project #: Annual
Field Test Field Test Field Test W= Water	e e lic. um alt alt ry	CGLP CCR
5.	Preservative:	Project Name:
Field Testing	List Analyses Requested	
QC Level: Level 1 Level 2 Level 3	Sampler Name Signed:	ax.
Central	Jan Clork	Fax:
Othor* prior approved. — Fmail		Phone: 662-387-5758
ay* requests must be	Email Address: (Clark & PAU'ro come net	City: Ackerman State: MS Zip: 39735
Our normal turn around time is 10 working days *All risk order Phone	Purchase Order #:	Address: 2391 Pensacola Rd.
Turn Around Time & Reporting	Project Manager: Jim Ward	Choctaw Generation Limited Partnership LLLP

Print Form

June 29, 2021

Tina Tomek Micro Methods Laboratory, Inc. P. O. Box 1410 Ocean Springs, MS 39566

RE: Project: 2105488

Pace Project No.: 20210296

Dear Tina Tomek:

Enclosed are the analytical results for sample(s) received by the laboratory on June 02, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Greensburg

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Karen Brown

karen.brown@pacelabs.com

Kaunt Prour

(504)469-0333

Project Manager

Enclosures

1000 Riverbend Blvd - Suite F St. Rose, LA 70087 (504)469-0333

CERTIFICATIONS

Project: 2105488
Pace Project No.: 20210296

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734 Arkansas Certification

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET

Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235
Montana Certification #: Cert0082
Nebraska Certification #: NE-OS-29-14
Nevada Certification #: PA014572018-1
New Hampshire/TNI Certification #: 297617
New Jersey/TNI Certification #: PA051
New Mexico Certification #: PA01457
New York/TNI Certification #: 10888
North Carolina Certification #: 42706
North Dakota Certification #: R-190

Ohio EPA Rad Approval: #41249 Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification
Tennessee Certification #: 02867

Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

SAMPLE SUMMARY

Project: 2105488
Pace Project No.: 20210296

Lab ID	Sample ID	Matrix	Date Collected	Date Received
20210296001	2105488-01	Water	05/26/21 12:00	06/02/21 10:44
20210296002	2105488-02	Water	05/26/21 10:48	06/02/21 10:44
20210296003	2105488-03	Water	05/26/21 10:05	06/02/21 10:44
20210296004	2105488-04	Water	05/26/21 12:55	06/02/21 10:44
20210296005	2105488-05	Water	05/26/21 10:55	06/02/21 10:44
20210296006	2105488-06	Water	05/26/21 12:35	06/02/21 10:44
20210296007	2105488-07	Water	05/26/21 00:00	06/02/21 10:44
20210296008	2105488-08	Water	05/26/21 09:25	06/02/21 10:44
20210296009	2105488-09	Water	05/26/21 12:05	06/02/21 10:44
20210296010	2105488-10	Water	05/26/21 11:23	06/02/21 10:44
20210296011	2105488-11	Water	05/26/21 08:26	06/02/21 10:44
20210296012	2105488-12	Water	05/26/21 08:45	06/02/21 10:44

SAMPLE ANALYTE COUNT

Project: 2105488
Pace Project No.: 20210296

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
20210296001	2105488-01	EPA 903.1	SLC	1	PASI-PA
		EPA 904.0	JC2	1	PASI-PA
20210296002	2105488-02	EPA 903.1	SLC	1	PASI-PA
		EPA 904.0	JC2	1	PASI-PA
20210296003	2105488-03	EPA 903.1	SLC	1	PASI-PA
		EPA 904.0	JC2	1	PASI-PA
20210296004	2105488-04	EPA 903.1	SLC	1	PASI-PA
		EPA 904.0	JC2	1	PASI-PA
20210296005	2105488-05	EPA 903.1	SLC	1	PASI-PA
		EPA 904.0	JC2	1	PASI-PA
20210296006	2105488-06	EPA 903.1	SLC	1	PASI-PA
		EPA 904.0	JC2	1	PASI-PA
20210296007	2105488-07	EPA 903.1	SLC	1	PASI-PA
		EPA 904.0	JC2	1	PASI-PA
20210296008	2105488-08	EPA 903.1	SLC	1	PASI-PA
		EPA 904.0	JC2	1	PASI-PA
20210296009	2105488-09	EPA 903.1	SLC	1	PASI-PA
		EPA 904.0	JC2	1	PASI-PA
20210296010	2105488-10	EPA 903.1	SLC	1	PASI-PA
		EPA 904.0	JC2	1	PASI-PA
20210296011	2105488-11	EPA 903.1	SLC	1	PASI-PA
		EPA 904.0	JC2	1	PASI-PA
20210296012	2105488-12	EPA 903.1	SLC	1	PASI-PA
		EPA 904.0	JC2	1	PASI-PA

PASI-PA = Pace Analytical Services - Greensburg

PROJECT NARRATIVE

Project: 2105488

Pace Project No.: 20210296

Method: EPA 903.1

Description: 903.1 Radium 226 **Client:** Micro Methods **Date:** June 29, 2021

General Information:

12 samples were analyzed for EPA 903.1 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: 2105488

Pace Project No.: 20210296

Method: EPA 904.0

Description: 904.0 Radium 228 **Client:** Micro Methods **Date:** June 29, 2021

General Information:

12 samples were analyzed for EPA 904.0 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: 2105488
Pace Project No.: 20210296

Sample: 2105488-01 PWS:	Lab ID: 20210296 Site ID:	001 Collected: 05/26/21 12:00 Sample Type:	Received:	06/02/21 10:44 I	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
. arametere	Pace Analytical Serv	· · · · · · · · · · · · · · · · · · ·				
Radium-226	EPA 903.1	0.228 ± 0.419 (0.747) C:NA T:91%	pCi/L	06/29/21 12:39	13982-63-3	
	Pace Analytical Serv					
Radium-228	EPA 904.0	0.247 ± 0.551 (1.22) C:65% T:83%	pCi/L	06/28/21 14:52	2 15262-20-1	
Sample: 2105488-02 PWS:	Lab ID: 20210296 Site ID:	002 Collected: 05/26/21 10:48 Sample Type:	Received:	06/02/21 10:44 I	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Serv	ices - Greensburg		-		
Radium-226	EPA 903.1	0.168 ± 0.396 (0.733) C:NA T:94%	pCi/L	06/29/21 12:39	13982-63-3	
	Pace Analytical Serv	ices - Greensburg				
Radium-228	EPA 904.0	2.31 ± 0.904 (1.45) C:67% T:87%	pCi/L	06/28/21 18:12	2 15262-20-1	
Sample: 2105488-03	Lab ID: 20210296		Received:	06/02/21 10:44	Matrix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Serv	ices - Greensburg				
Radium-226	EPA 903.1	-0.132 ± 0.409 (0.930) C:NA T:85%	pCi/L	06/29/21 12:39	13982-63-3	
	Pace Analytical Serv					
Radium-228	EPA 904.0	0.633 ± 0.569 (1.15) C:68% T:80%	pCi/L	06/28/21 17:49	15262-20-1	
Sample: 2105488-04	Lab ID: 20210296		Received:	06/02/21 10:44 I	Matrix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Serv	ices - Greensburg				
Radium-226	EPA 903.1	0.386 ± 0.507 (0.844) C:NA T:90%	pCi/L	06/29/21 12:39	13982-63-3	
	Pace Analytical Serv	ices - Greensburg				
Radium-228		1.11 ± 0.641 (1.15) C:60% T:91%	pCi/L	06/28/21 17:49	15262-20-1	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: 2105488
Pace Project No.: 20210296

Sample: 2105488-05 PWS:	Lab ID: 20210296 Site ID:	005 Collected: 05/26/21 10:55 Sample Type:	Received:	06/02/21 10:44	Matrix: Water	
-			11-20-	A b d	040 N=	01
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Serv	ices - Greensburg				
Radium-226		0.493 ± 0.386 (0.454) C:NA T:89%	pCi/L	06/29/21 12:39	13982-63-3	
	Pace Analytical Serv	ices - Greensburg				
Radium-228		0.338 ± 0.678 (1.49) C:60% T:81%	pCi/L	06/28/21 17:49	15262-20-1	
Sample: 2105488-06	Lab ID: 20210296		Received:	06/02/21 10:44	Matrix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Serv	ices - Greensburg				
Radium-226		-0.0520 ± 0.270 (0.625) C:NA T:96%	pCi/L	06/29/21 12:39	13982-63-3	
	Pace Analytical Serv	ices - Greensburg				
Radium-228		0.158 ± 0.562 (1.27) C:64% T:90%	pCi/L	06/28/21 17:49	15262-20-1	
Sample: 2105488-07	Lab ID: 20210296	007 Collected: 05/26/21 00:00	Received:	06/02/21 10:44	Matrix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Serv	ices - Greensburg		•		
Radium-226		0.0606 ± 0.356 (0.728) C:NA T:86%	pCi/L	06/29/21 12:39	13982-63-3	
	Pace Analytical Serv	ices - Greensburg				
Radium-228		-0.0364 ± 0.553 (1.30) C:62% T:82%	pCi/L	06/28/21 17:49	15262-20-1	
Sample: 2105488-08	Lab ID: 20210296	008 Collected: 05/26/21 09:25	Received:	06/02/21 10:44	Matrix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Serv	ices - Greensburg				
Radium-226		0.123 ± 0.451 (0.867) C:NA T:87%	pCi/L	06/29/21 12:39	13982-63-3	
	Pace Analytical Serv	ices - Greensburg				
Radium-228		0.544 ± 0.666 (1.41) C:64% T:80%	pCi/L	06/28/21 17:49	15262-20-1	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

ANALYTICAL RESULTS - RADIOCHEMISTRY

 Project:
 2105488

 Pace Project No.:
 20210296

Sample: 2105488-09 PWS:	Lab ID: 20210296 Site ID:	6009 Collected: 05/26/21 12:05 Sample Type:	Received:	06/02/21 10:44	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Serv	<u> </u>				
Radium-226	EPA 903.1	0.0652 ± 0.384 (0.783) C:NA T:88%	pCi/L	06/29/21 12:52	2 13982-63-3	
	Pace Analytical Serv	rices - Greensburg				
Radium-228	EPA 904.0	0.226 ± 0.584 (1.30) C:69% T:81%	pCi/L	06/28/21 17:50	15262-20-1	
Sample: 2105488-10 PWS:	Lab ID: 20210296 Site ID:	6010 Collected: 05/26/21 11:23 Sample Type:	Received:	06/02/21 10:44	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Serv	rices - Greensburg				
Radium-226	EPA 903.1	0.000 ± 0.330 (0.715) C:NA T:95%	pCi/L	06/29/21 12:52	13982-63-3	
	Pace Analytical Serv	rices - Greensburg				
Radium-228	EPA 904.0	0.481 ± 0.707 (1.52) C:63% T:80%	pCi/L	06/28/21 17:50	15262-20-1	
Sample: 2105488-11 PWS:	Lab ID: 20210296		Received:	06/02/21 10:44	Matrix: Water	
	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Serv	rices - Greensburg				
Radium-226	EPA 903.1	0.181 ± 0.314 (0.561) C:NA T:85%	pCi/L	06/29/21 12:52	2 13982-63-3	
	Pace Analytical Serv					
Radium-228	EPA 904.0	0.522 ± 0.659 (1.40) C:64% T:89%	pCi/L	06/28/21 17:50	15262-20-1	
Sample: 2105488-12	Lab ID: 20210296	6012 Collected: 05/26/21 08:45	Received:	06/02/21 10:44	Matrix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Serv	rices - Greensburg				
Radium-226	EPA 903.1	-0.120 ± 0.499 (1.04) C:NA T:95%	pCi/L	06/29/21 12:52	13982-63-3	
	Pace Analytical Serv	rices - Greensburg				
Radium-228	EPA 904.0	0.112 ± 0.445 (1.01) C:66% T:90%	pCi/L	06/28/21 17:50	15262-20-1	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALITY CONTROL - RADIOCHEMISTRY

Project: 2105488
Pace Project No.: 20210296

QC Batch: 451872 Analysis Method: EPA 904.0

QC Batch Method: EPA 904.0 Analysis Description: 904.0 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 20210296001, 20210296002, 20210296003, 20210296004, 20210296005, 20210296006, 20210296007,

20210296008, 20210296009, 20210296010, 20210296011, 20210296012

METHOD BLANK: 2180902 Matrix: Water

Associated Lab Samples: 20210296001, 20210296002, 20210296003, 20210296004, 20210296005, 20210296006, 20210296007,

20210296008, 20210296009, 20210296010, 20210296011, 20210296012

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.734 ± 0.392 (0.694) C:67% T:90%
 pCi/L
 06/28/21 11:41

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project: 2105488
Pace Project No.: 20210296

QC Batch: 451873 Analysis Method: EPA 903.1

QC Batch Method: EPA 903.1 Analysis Description: 903.1 Radium-226

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 20210296001, 20210296002, 20210296003, 20210296004, 20210296005, 20210296006, 20210296007,

20210296008, 20210296009, 20210296010, 20210296011, 20210296012

METHOD BLANK: 2180903 Matrix: Water

Associated Lab Samples: 20210296001, 20210296002, 20210296003, 20210296004, 20210296005, 20210296006, 20210296007,

20210296008, 20210296009, 20210296010, 20210296011, 20210296012

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 -0.0495 ± 0.257 (0.595) C:NA T:88%
 pCi/L
 06/29/21 12:26

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 2105488
Pace Project No.: 20210296

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Date: 06/29/2021 02:19 PM

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The Nelac Institute

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 2105488
Pace Project No.: 20210296

Date: 06/29/2021 02:19 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
20210296001	2105488-01	EPA 903.1	451873		
20210296002	2105488-02	EPA 903.1	451873		
20210296003	2105488-03	EPA 903.1	451873		
20210296004	2105488-04	EPA 903.1	451873		
20210296005	2105488-05	EPA 903.1	451873		
20210296006	2105488-06	EPA 903.1	451873		
20210296007	2105488-07	EPA 903.1	451873		
20210296008	2105488-08	EPA 903.1	451873		
20210296009	2105488-09	EPA 903.1	451873		
20210296010	2105488-10	EPA 903.1	451873		
20210296011	2105488-11	EPA 903.1	451873		
20210296012	2105488-12	EPA 903.1	451873		
20210296001	2105488-01	EPA 904.0	451872		
20210296002	2105488-02	EPA 904.0	451872		
20210296003	2105488-03	EPA 904.0	451872		
20210296004	2105488-04	EPA 904.0	451872		
20210296005	2105488-05	EPA 904.0	451872		
20210296006	2105488-06	EPA 904.0	451872		
20210296007	2105488-07	EPA 904.0	451872		
20210296008	2105488-08	EPA 904.0	451872		
20210296009	2105488-09	EPA 904.0	451872		
20210296010	2105488-10	EPA 904.0	451872		
20210296011	2105488-11	EPA 904.0	451872		
20210296012	2105488-12	EPA 904.0	451872		

SUBCONTRACT ORDER

Sending Laboratory:

Micro-Methods Laboratory, Inc.

6500 Sunplex Drive

Ocean Springs, MS 39564 Phone: 228.875.6420

Fax: 228.875.6423

Project Manager: Teresa Meins

Subcontracted Laboratory:

Pace Analytical 1000 Riverbend Blvd. Suite F St. Rose, LA 70087

Phone: -

Fax: -

W0#:20210296

20210296

Work Orde	r: 21 ()5488
-----------	----------------	-------

analysis		Due	Ex	pires	Comments		
mple ID: 2105488-01	Water S	ampled:	05/26/2021	12:00	Sample Name:	MW-7	
adium,Total 226 & 228 by EPA	03.1 & 90	06/04/2	021 06/23/2	021 12:00			
Intainers Supplied: 000mL Plastic w/HNO3 (A) 1000	mL Plastic w	/HNO3 (B)			 .yg.,		
ample ID: 2105488-02	Water S	ampled:	05/26/2021	10:48	Sample Name:	MW-9	
adium,Total 226 & 228 by EPA 9	03.1 & 9C	06/04/2	021 06/23/2	021 10:48			
ontainers Supplied: 1000mL Plastic w/HNO3 (A) 1000	m L Plastic w	/HNO3 (B)					
mple ID: 2105488-03	Water S	ampled:	05/26/2021	10:05	Sample Name:	MW-12	
adium,Total 226 & 228 by EPA 9	03.1 & 90	06/04/2	021 06/23/2	021 10:05		# 25	
ntainers Supplied:							
000mL Plastic w/HNO3 (A) 1000	mL Plastic w	/HNO3 (B)			1.1	: T	
mple ID: 2105488-04	Nater S	ampled:	05/26/2021	12:55	Sample Name:	MW-13	
ontainers Supplied: 1000mL Plastic w/HNO3 (A) 1000m ample ID: 2105488-05			05/26/2021	10:55	Sample Name:	MW-14	
adium,Total 226 & 228 by EPA 9	03.1 & 90	06/04/20	021 06/23/2	021 10:55	<u>`</u>		4 0
smay Jomen		101/21	P 1030		UPS	4/01/210	1630
eased By	don	Date		Receiv	red By	1.	Date
VPS	104/2	7 (*			111/	6/2/2021	1044
eased By	:	Date		Ře d	ed/By	- , ,	Date
leased By		Date		Regeiv	red By		Date
leased By		Date		Receiv	red By		Date
eased Bv		Date		Receiv	red Bv		 Date

SUBCONTRACT ORDER

(Continued)

Work Order: 2105488 (Continued) Analysis Due **Expires** Comments Containers Supplied: 4000mL Plastic w/HNO3 (A) 1000mL Plastic w/HNO3 (B) imple ID: 2105488-06 Water Sampled: 05/26/2021 12:35 Sample Name: Field Blank dium, Total 226 & 228 by EPA 903.1 & 90 🖔 06/04/2021 06/23/2021 12:35 intainers Supplied: 🐰 000mL Plastic w/HNO3 (A) 1000mL Plastic w/HNO3 (B) mple ID: 2105488-07 Sampled: 05/26/2021 00:00 Water Sample Name: Duplicate Radium, Total 226 & 228 by EPA 903.1 & 90 06/04/2021 06/23/2021 00:00 Containers Supplied: 1000mL Plastic w/HNO3 (A) 1000mL Plastic w/HNO3 (B) ample ID: 2105488-08 Water Sampled: 05/26/2021 09:25 Sample Name: OW-2 Radium, Total 226 & 228 by EPA 903.1 & 90 06/04/2021 06/23/2021 09:25 .ntainers Supplied: 000mL Plastic w/HNO3 (A) 1000mL Plastic w/HNO3 (B) mple ID: 2105488-09 Water Sampled: 05/26/2021 12:05 Sample Name: CCR-2 dium, Total 226 & 228 by EPA \$03.1 & 90 06/04/2021 06/23/2021 12:05 ntainers Supplied: 1000mL Plastic w/HNO3 (A) 1000mL Plastic w/HNO3 (B) ample ID: 2105488-10 Water Sampled: 05/26/2021 11:23 Sample Name: CCR-3 Radium, Total 226 & 228 by EPA 903.1 & 90 06/04/2021 06/23/2021 11:23 ontainers Supplied: [1000mL Plastic w/HNO3 (A) 1000mL Plastic w/HNO3 (B) mple ID: 2105488-11 Water Sampled: 05/26/2021 08:26 Sample Name: CCR-4 dium, Total 226 & 228 by EPA 903.1 & 90 06/04/2021 06/23/2021 08:26 ntainers Supplied: 000mL Plastic w/HNO3 (A) 1000mL Plastic w/HNO3 (B) mple ID: 2105488-12 Water Sampled: 05/26/2021 08:45 Sample Name: CCR-5 leased By Received/8 leased By Date Received Date eased By Date Received By Date ased By Date Received By Date Date Received By eased By Date

SUBCONTRACT ORDER

(Continued)

ork Order: 2105488 (Continued)

nalysis		Due	Expires	Comments	
ample ID: 2105488-12	Water	Sampled: 05/2	26/2021 08:45	Sample Name: CCR-5	
adium,Total 226 & 228 by EPA	903.1 & 9	C 06/04/2021	06/23/2021 08:45		
ontainers Supplied: 1000mL Plastic w/HNO3 (A) 100	00mL Plastic	w/HNO3 (B)			

nalysis			D	ıe	Expir	es	Comments			
mple ID:	2105488-12	2 Wate	r Sampled	: 05/26	5/2021 08	3:45	Sample Name:	CCR-5		
adium,Total	226 & 228 by I	EPA 903.1	& 9C 06/04	/2021	06/23/2021	08:45				
ntainers Su _l	<i>oplied:</i> ic w/HNO3 (A)	1000ml Di≘	etic w/HNO3 (F	1)						
, OOOME Flase		TOOUTHE FIG	(L	·//						
1							and the second second		٠.	
							: 34		. •	
	J. 6	¥.					5		<u>.</u>	
		4 m	ē,							
	7:	Ŧ					;			
	÷,	y					e ²		. 2.	
		***	•							
	•									
					•					
mal	\mathcal{M}_{α}	1 8	6/10/10	11,3	/)		1005	6/0	1/210	1630
ased Bv	jorne	<u> </u>	19/01/21 P Date	100	<u> </u>	Receive	ed By2	}	1 1	Date
//	V C	4/00	11210			\leq	/(/) /	1 h		26 1564
ased By	/ 	702	7 <i>2-1</i> `			Receive	BUB		og ab	<u> </u>
								V	ν	
ased By			Date	!		Receive	ed By			Date
				•						
ased By			Date	!		Receive	ed By			Date
ased By			Date		·	Receive	ed By		<u> </u>	Date
·		10 mg					,			
					Page 3	of 3				Page 16
										Page 47 c

Pace Analytical

Sample Condition Upon |

WO#:20210296

PM: KHE

lue Date: 06/24/2

CLIENT: 20-MICRO

Chain of Custody Present: Chain of Custody Complete: Chain of Custody Relinquished: Sampler Name & Signature on COC: Yes No N/A 5 Samples Arrived within Hold Time: Sufficient Volume: Correct Containers Used: Filtered vol. Rec. for Diss. tests Sample Labels match COC: Yes No N/A 8 Sample Labels match COC: All containers received within manafacture's precautionary and/or expiration dates. All containers peeding chemical preservation have
Therometer
Used:
Used:
Cooler Temperature: [see COC] Temp should be above freezing to 6°C Contents: Contents: Contents: Comments: Temp must be measured from Temperature blank when present Comments: Temperature Blank Present"? Chain of Custody Present: Chain of Custody Complete: Chain of Custody Relinquished: Sampler Name & Signature on COC: Cyes No N/A 4 Sampler Name & Signature on COC: Samples Arrived within Hold Time: Sufficient Volume: Correct Containers Used: Filtered vol. Rec. for Diss. tests Contents: Comments: Comments:
Temperature Blank Present**?
Chain of Custody Present: Chain of Custody Complete: Chain of Custody Relinquished: Sampler Name & Signature on COC: Yes No N/A 5 Samples Arrived within Hold Time: Sufficient Volume: Correct Containers Used: Filtered vol. Rec. for Diss. tests Sample Labels match COC: Yes No N/A 8 Sample Labels match COC: All containers received within manafacture's precautionary and/or expiration dates. All containers peeding chemical preservation have
Chain of Custody Complete: Yes
Chain of Custody Relinquished: Sampler Name & Signature on COC: Yes No NA 5 Samples Arrived within Hold Time: Sufficient Volume: Correct Containers Used: Filtered vol. Rec. for Diss. tests Yes No NA 9 Sample Labels match COC: All containers received within manafacture's precautionary and/or expiration dates. All containers peeding chemical preservation have
Sampler Name & Signature on COC:
Samples Arrived within Hold Time: Sufficient Volume: Correct Containers Used: Filtered vol. Rec. for Diss. tests Yes No N/A 9 Sample Labels match COC: All containers received within manafacture's precautionary and/or expiration dates. All containers peeding chemical preservation have
Sufficient Volume: Ves
Correct Containers Used: Yes
Filtered vol. Rec. for Diss. tests Yes No N/A 9
Sample Labels match COC: All containers received within manafacture's precautionary and/or expiration dates. All confainers peeding chemical preservation have
All containers received within manafacture's precautionary and/or expiration dates. All containers needing chemical preservation have
precautionary and/or expiration dates. All containers needing chemical preservation have
All containers needing chemical preservation have
been checked (except VOA, coliform, & O&G).
All containers preservation checked found to be in Compliance with EPA recommendation. If No, was preserative added? If No, was preserative added? If No, was preserative added? If added record lot no.: HNO3 H2SO4
Headspace in VOA Vials (>6mm): □Yes □No ☑N/A 14
Trip Blank Present:
Client Notification/ Resolution: Person Contacted: Date/Time: Comments/ Resolution:

Mailing Address: PO Box 1410 Ocean Springs, MS 39566-1410 6500 Sunplex Drive Ocean Springs, MS 39564 228.875.6420 Phone 228.875.6423 Fax

October 08, 2021

Jim Ward Work Order #: 2109187

Choctaw Generation LP 2391 Pensacola Rd.

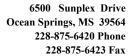
Ackerman, MS 39735

RE: CGLP CCR Semi Annual

Purchase Order #:

Enclosed are Micro-Methods Laboratory, Inc. results of analyses performed on samples received 09/09/2021 09:25. If you have any questions concerning this report, please feel free to contact the office.

Sincerely,


Mitch Spicer

Lab Director *Micro-Methods Laboratory, Inc.*

DISCLAIMER

The results only relate to the items or the sample and/or samples received by the laboratory. This report shall not be reproduced except in full, without the approval of the laboratory. All NELAP certified test methods performed meet the requirements of NELAC 2009 Standards. Any variances and/or deviations specific to this analytical report are referenced in the lab report using qualifiers and detailed explanations found in the case narrative.

Project: CGLP CCR Semi Annual

Project Number: Semi-Annual Reported:
Project Manager: Jim Ward 10/08/2021 08:54

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date/Time Sampled	Sampled by	Date/Time Received
MW-9	2109187-01	Water	09/08/2021 09:40	Cam Clark	09/09/2021 09:25
OW-2	2109187-02	Water	09/08/2021 11:41	Cam Clark	09/09/2021 09:25
MW-13	2109187-03	Water	09/08/2021 09:45	Cam Clark	09/09/2021 09:25
MW-7	2109187-04	Water	09/08/2021 11:00	Cam Clark	09/09/2021 09:25
MW-14	2109187-05	Water	09/08/2021 12:05	Cam Clark	09/09/2021 09:25
Field Blank	2109187-06	Water	09/08/2021 12:35	Cam Clark	09/09/2021 09:25
Duplicate	2109187-07	Water	09/08/2021 00:00	Cam Clark	09/09/2021 09:25
MW-12	2109187-08	Water	09/08/2021 10:38	Cam Clark	09/09/2021 09:25
CCR-2	2109187-09	Water	09/08/2021 12:50	Cam Clark	09/09/2021 09:25
CCR-3	2109187-10	Water	09/08/2021 08:38	Cam Clark	09/09/2021 09:25
CCR-4	2109187-11	Water	09/08/2021 14:00	Cam Clark	09/09/2021 09:25
CCR-5	2109187-12	Water	09/08/2021 08:27	Cam Clark	09/09/2021 09:25

Project: CGLP CCR Semi Annual

Project Number: Semi-Annual Reported: 10/08/2021 08:54 Project Manager: Jim Ward

Sample Receipt Conditions

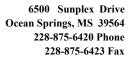
Date/Time Received: 9/9/2021 9:25:00AM

Received by: Sarah E. Tomek

Date/Time Logged: 9/9/2021 3:16:00PM

Cooler ID: #1119 Shipped by:

Submitted by: Cam Clark

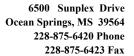

Logged by: Sarah E. Tomek

Fed Ex

Receipt Temperature: 0.6 °C

Yes Cooler Custody Seals Present Yes Received on Ice but Not Frozen Containers Intact Yes No Ice, Short Trip No COC/Labels Agree Yes **Obvious Contamination** No Labels Complete Rush to meet HT Yes No COC Complete Yes Received within HT Yes Volatile Vial Headspace >6mm Proper Containers for Analysis No Yes Field Sheet/Instructions Included Correct Preservation No Yes Samples Rejected/Documented in Log No Adequate Sample for Analysis Yes Temp Taken From Temp Blank Yes Sample Custody Seals Present Yes Temp Taken From Sample Container Samples Missing from COC/Cooler No No

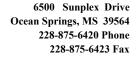
Temp Taken From Cooler No COC meets acceptance criteria Yes



Choctaw Generation LP Project: CGLP CCR Semi Annual

2391 Pensacola Rd. Project Number: Semi-Annual Reported:
Ackerman MS, 39735 Project Manager: Jim Ward 10/08/2021 08:54

0 1 0 1 1 0 1 0 1		Description of the first Net France	Yes
Cooler Custody Seals Present	Yes	Received on Ice but Not Frozen	res
Containers Intact	Yes	No Ice, Short Trip	No
COC/Labels Agree	Yes	Obvious Contamination	No
Labels Complete	Yes	Rush to meet HT	No
COC Complete	Yes	Received within HT	Yes
Volatile Vial Headspace >6mm	No	Proper Containers for Analysis	Yes
Field Sheet/Instructions Included	No	Correct Preservation	Yes
Samples Rejected/Documented in Log	No	Adequate Sample for Analysis	Yes
Temp Taken From Temp Blank	Yes	Sample Custody Seals Present	Yes
Temp Taken From Sample Container	No	Samples Missing from COC/Cooler	No
Temp Taken From Cooler	No		
COC meets acceptance criteria	Yes		



Choctaw Generation LP Project: CGLP CCR Semi Annual 2391 Pensacola Rd. Project Number: Semi-Annual

2391 Pensacola Rd. Project Number: Semi-Annual Reported:
Ackerman MS, 39735 Project Manager: Jim Ward 10/08/2021 08:54

	_		
Cooler Custody Seals Present	Yes	Received on Ice but Not Frozen	Yes
Containers Intact	Yes	No Ice, Short Trip	No
COC/Labels Agree	Yes	Obvious Contamination	No
Labels Complete	Yes	Rush to meet HT	No
COC Complete	Yes	Received within HT	Yes
Volatile Vial Headspace >6mm	No	Proper Containers for Analysis	Yes
Field Sheet/Instructions Included	No	Correct Preservation	Yes
Samples Rejected/Documented in Log	No	Adequate Sample for Analysis	Yes
Temp Taken From Temp Blank	Yes	Sample Custody Seals Present	Yes
Temp Taken From Sample Container	No	Samples Missing from COC/Cooler	No
Temp Taken From Cooler	No		
COC meets acceptance criteria	Yes		

Project: CGLP CCR Semi Annual

Project Number: Semi-Annual Project Manager: Jim Ward

Reported: 10/08/2021 08:54

CASE NARRATIVE SUMMARY

All reported results are within Micro-Methods Laboratory, Inc.defined laboratory quality control objectives unless detailed in narrative summary or identified as qualifications. NOTE: All results listed on this report are calculated on a wet weight basis (as received by the laboratory) unless otherwise noted in the analysis qualification sections.

Summary Comments:

See attached results from Sub-Contract Laboratory

Total Metals-EPA 200.7 Rev 4.4

Qualifiers:

L1 LCS and/or LCSD Recovery Limit exceeded.

Lithium 610.362 [Axial]

1I13041-BS1, 1I13042-BS1

L3 LCS/LCSD Precision Limit exceeded.

Lithium 610.362 [Axial]

1I13041-BSD1, 1I13042-BSD1

Total Metals-EPA 200.8 Rev 5.4

Qualifiers:

L1 LCS and/or LCSD Recovery Limit exceeded.

Antimony [He], Arsenic [NG], Beryllium [He], Cadmium [He], Chromium [He], Cobalt [He], Lead [He], Molybdenum [He] 1113037-BS1, 1113040-BS1

Project: CGLP CCR Semi Annual

Project Number: Semi-Annual
Project Manager: Jim Ward

Reported: 10/08/2021 08:54

MW-9

2109187-01 (Water)

							Date Time	Date Time		
Analyte	Result	MRL	Units	Dil	Batch	Analyst	Prepared	Analyzed	Method	Qualifiers
Classical Chemistry Parame	eters									
Chloride	410	25.0	mg/L	50.0	1114031	DLW	09/13/2021 09:34	09/13/2021 14:41	SM 4110B 2011	
Sulfate as SO4	ND	250	"	"	"	DLW			"	
Fluoride	0.41	0.22	"	1.0	1110020	TKM	09/10/2021 08:35	09/10/2021 11:16	SM 4500-F C 2011	
Total Dissolved Solids	913	1	"	"	1113055	DLW	09/13/2021 13:00	09/14/2021 00:00	SM 2540 C-2011	
Metals by EPA 200 Series Me	ethods ICP-AES									
Barium 455.403 [Radial]	0.084	0.010	mg/L	1.0	1113041	CLV	09/13/2021 09:40	09/21/2021 16:48	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	ND	0.050	"	"	"	CLV			"	
Calcium 315.887 [Radial]	50.9	0.100	"	2.0	"	CLV		09/27/2021 11:17	u	
Lithium 610.362 [Axial]	0.087	0.040	"	1.0	"	CLV		09/21/2021 16:48	"	
Metals by EPA 200 Series Me	ethods ICP-MS [Analysis M	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	1113040	CLV	09/13/2021 09:30	09/16/2021 19:05	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	"	"	CLV		09/27/2021 16:29	"	
Beryllium [He]	0.00374	0.00100	"	"	"	CLV			"	
Cadmium [He]	ND	0.00100	"	"	"	CLV		09/16/2021 19:05	"	
Chromium [He]	ND	0.00100	"	"	"	CLV		"	"	
Cobalt [He]	0.0181	0.00100	"	"	"	CLV		09/27/2021 16:29	"	
Lead [He]	0.00123	0.00100	"	"	"	CLV		09/16/2021 19:05	"	
Molybdenum [He]	ND	0.00100	"	"	"	CLV			•	
Selenium [NG]	ND	0.00500	"	"	"	CLV			"	

Project: CGLP CCR Semi Annual

Project Number: Semi-Annual
Project Manager: Jim Ward

Reported: 10/08/2021 08:54

OW-2

2109187-02 (Water)

					/					
Analyte	Result	MRL	Units	Dil	Batch	Analyst	Date Time Prepared	Date Time Analyzed	Method	Qualifiers
, , , , , , , , , , , , , , , , , , ,		IVIIXL	Office	ווט	Daton	Alialyst	· · · sparou	ary20a	wethou	Quailleis
Classical Chemistry Parame										
Chloride	62.1	5.00	mg/L	10.0	1114031	DLW	09/13/2021 09:34	09/13/2021 15:13	SM 4110B 2011	
Sulfate as SO4	122	50.0	"	"	"	DLW	"	"	"	
Fluoride	0.25	0.22	"	1.0	1110020	TKM	09/10/2021 08:35	09/10/2021 11:16	SM 4500-F C 2011	
Total Dissolved Solids	297	1	"	"	1113055	DLW	09/13/2021 13:00	09/14/2021 00:00	SM 2540 C-2011	
Metals by EPA 200 Series M	ethods ICP-AES	3								
Barium 455.403 [Radial]	0.046	0.010	mg/L	1.0	1113041	CLV	09/13/2021 09:40	09/21/2021 16:59	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	ND	0.050	"	"	"	CLV		"	"	
Calcium 315.887 [Radial]	29.5	0.050	"	"	"	CLV			,	
Lithium 610.362 [Axial]	0.046	0.040	"	"	"	CLV			"	
Metals by EPA 200 Series M	ethods ICP-MS	[Analysis N	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	1113040	CLV	09/13/2021 09:30	09/16/2021 19:22	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	"	"	CLV		09/20/2021 15:01	"	
Beryllium [He]	ND	0.00100	"	"	"	CLV		"	"	
Cadmium [He]	ND	0.00100	"	"	"	CLV		09/16/2021 19:22	"	
Chromium [He]	ND	0.00100	"	"	"	CLV			"	
Cobalt [He]	ND	0.00100	"	"	"	CLV		09/20/2021 15:01	"	
Lead [He]	ND	0.00100	"	"	"	CLV		09/16/2021 19:22	"	
Molybdenum [He]	ND	0.00100	"	"	"	CLV		09/20/2021 15:01	n	
Selenium [NG]	ND	0.00500	"	"	"	CLV		09/16/2021 19:22	"	

Project: CGLP CCR Semi Annual

Project Number: Semi-Annual
Project Manager: Jim Ward

Reported: 10/08/2021 08:54

MW-13

2109187-03 (Water)

				0, 00 (110	,					
Austria	Deault	MDI	Lleite	Dil	Datak	Analyst	Date Time Prepared	Date Time Analyzed	Madea	Ovelifien
Analyte	Result	MRL	Units	Dil	Batch	Analyst	Fiepaleu	Analyzeu	Method	Qualifiers
Classical Chemistry Paramet	ers									
Chloride	3.89	0.500	mg/L	1.0	1114031	DLW	09/13/2021 09:34	09/13/2021 15:45	SM 4110B 2011	
Sulfate as SO4	ND	5.00	"	"	"	DLW			"	
Fluoride	ND	0.22	"	"	1110020	TKM	09/10/2021 08:35	09/10/2021 11:16	SM 4500-F C 2011	
Total Dissolved Solids	138	1	"	"	1113055	DLW	09/13/2021 13:00	09/14/2021 00:00	SM 2540 C-2011	
Metals by EPA 200 Series Me	thods ICP-AES									
Barium 455.403 [Radial]	0.159	0.010	mg/L	1.0	1113041	CLV	09/13/2021 09:40	09/21/2021 17:02	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	ND	0.050	"	"	"	CLV			"	
Calcium 315.887 [Radial]	17.5	0.050	"	"	"	CLV	*		"	
Lithium 610.362 [Axial]	ND	0.040	"	"	"	CLV			"	
Metals by EPA 200 Series Me	thods ICP-MS [Analysis N	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	1113040	CLV	09/13/2021 09:30	09/16/2021 19:28	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	"	"	CLV		09/20/2021 15:07	u	
Beryllium [He]	ND	0.00100	"	"	"	CLV			"	
Cadmium [He]	ND	0.00100	"	"	"	CLV		09/16/2021 19:28	"	
Chromium [He]	ND	0.00100	"	u u	"	CLV	*		"	
Cobalt [He]	ND	0.00100	"	"	"	CLV		09/20/2021 15:07	"	
Lead [He]	ND	0.00100	"	"	"	CLV		09/16/2021 19:28	"	
Molybdenum [He]	ND	0.00100	"	"	"	CLV				
Selenium [NG]	ND	0.00500	"	"	"	CLV		*	"	

Project: CGLP CCR Semi Annual

Project Number: Semi-Annual
Project Manager: Jim Ward

Reported: 10/08/2021 08:54

MW-7

2109187-04 (Water)

				•	,					
							Date Time	Date Time		
Analyte	Result	MRL	Units	Dil	Batch	Analyst	Prepared	Analyzed	Method	Qualifiers
Classical Chemistry Paramete	rs									
Chloride	3.61	0.500	mg/L	1.0	1114031	DLW	09/13/2021 09:34	09/13/2021 16:16	SM 4110B 2011	
Sulfate as SO4	51.1	20.0	"	4.0	"	DLW		09/13/2021 16:48	"	
Fluoride	ND	0.22	"	1.0	1110020	TKM	09/10/2021 08:35	09/10/2021 11:16	SM 4500-F C 2011	
Total Dissolved Solids	140	1	"	"	1113055	DLW	09/13/2021 13:00	09/14/2021 00:00	SM 2540 C-2011	
Metals by EPA 200 Series Metals	hods ICP-AES									
Barium 455.403 [Radial]	0.082	0.010	mg/L	1.0	1113041	CLV	09/13/2021 09:40	09/21/2021 17:06	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	ND	0.050	"	"	"	CLV		"	"	
Calcium 315.887 [Radial]	34.3	0.050	"	"	"	CLV			"	
Lithium 610.362 [Axial]	ND	0.040	"	"	"	CLV			"	
Metals by EPA 200 Series Metals	hods ICP-MS [Analysis N	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	1113040	CLV	09/13/2021 09:30	09/16/2021 19:34	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	"	"	CLV		09/20/2021 15:13	"	
Beryllium [He]	ND	0.00100	"	"	"	CLV		•	"	
Cadmium [He]	ND	0.00100	"	"	"	CLV		09/16/2021 19:34	"	
Chromium [He]	ND	0.00100	"	"	"	CLV			"	
Cobalt [He]	ND	0.00100	"	"	"	CLV		09/20/2021 15:13	"	
Lead [He]	ND	0.00100	"	"	"	CLV	"	09/16/2021 19:34	"	
Molybdenum [He]	ND	0.00100	"	"	"	CLV		"	"	
Selenium [NG]	ND	0.00500	"	"	"	CLV			"	

Project: CGLP CCR Semi Annual

Project Number: Semi-Annual
Project Manager: Jim Ward

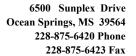
Reported: 10/08/2021 08:54

MW-14

2109187-05 (Water)

					,					
Analyte	Result	MRL	Units	Dil	Batch	Analyst	Date Time Prepared	Date Time Analyzed	Method	Qualifiers
Analyte		IVINL	Ullits	DII .	Datcii	Allalyst	Ттораточ	7 thatyzou	Metriod	Qualifiers
Classical Chemistry Parame	eters									
Chloride	22.4	0.500	mg/L	1.0	1114031	DLW	09/13/2021 09:34	09/13/2021 17:20	SM 4110B 2011	
Sulfate as SO4	7.82	5.00	"	"	"	DLW	"	"	"	
Fluoride	ND	0.22	"	"	1110020	TKM	09/10/2021 08:35	09/10/2021 11:16	SM 4500-F C 2011	
Total Dissolved Solids	78	1	"	"	1113055	DLW	09/13/2021 13:00	09/14/2021 00:00	SM 2540 C-2011	
Metals by EPA 200 Series M	ethods ICP-AES									
Barium 455.403 [Radial]	0.011	0.010	mg/L	1.0	1113041	CLV	09/13/2021 09:40	09/21/2021 17:10	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	ND	0.050	"	"	"	CLV	"		"	
Calcium 315.887 [Radial]	0.504	0.050	"	"	n n	CLV			"	
Lithium 610.362 [Axial]	ND	0.040	"	"	"	CLV			"	
Metals by EPA 200 Series M	ethods ICP-MS	Analysis N	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	1113040	CLV	09/13/2021 09:30	09/16/2021 19:40	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	"	"	CLV		09/20/2021 15:19	"	
Beryllium [He]	ND	0.00100	"	"	"	CLV			"	
Cadmium [He]	ND	0.00100	"	"	"	CLV		09/16/2021 19:40	"	
Chromium [He]	ND	0.00100	"	"	"	CLV	"		"	
Cobalt [He]	ND	0.00100	"	"	"	CLV		09/20/2021 15:19	"	
Lead [He]	ND	0.00100	"	"	"	CLV		09/16/2021 19:40	"	
Molybdenum [He]	ND	0.00100	"	"	"	CLV			"	
Selenium [NG]	ND	0.00500	"	"	"	CLV			"	

Project: CGLP CCR Semi Annual


Project Number: Semi-Annual
Project Manager: Jim Ward

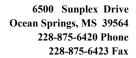
Reported: 10/08/2021 08:54

Field Blank

2109187-06 (Water)

				01-00 (446	,					
Analyte	Result	MRL	Units	Dil	Batch	Analyst	Date Time Prepared	Date Time Analyzed	Method	Qualifiers
,		WINCE	011110		Baton	7 that you	<u>'</u>	<u> </u>	Wictiod	Qualificia
Classical Chemistry Paramete										
Chloride	2.49	0.500	mg/L	1.0	1114031	DLW	09/13/2021 09:34	09/13/2021 17:52	SM 4110B 2011	
Sulfate as SO4	ND	5.00	"	"	"	DLW			"	
Fluoride	ND	0.22	"	"	1110020	TKM	09/10/2021 08:35	09/10/2021 11:16	SM 4500-F C 2011	
Total Dissolved Solids	24	1	"	"	1113055	DLW	09/13/2021 13:00	09/14/2021 00:00	SM 2540 C-2011	
Metals by EPA 200 Series Met	hods ICP-AES	}								
Barium 455.403 [Radial]	ND	0.010	mg/L	1.0	1113041	CLV	09/13/2021 09:40	09/21/2021 17:13	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	ND	0.050	"	"	"	CLV			•	
Calcium 315.887 [Radial]	2.91	0.050	"	"	"	CLV			m m	
Lithium 610.362 [Axial]	ND	0.040	"	"	"	CLV				
Metals by EPA 200 Series Met	hods ICP-MS	[Analysis N	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	1113040	CLV	09/13/2021 09:30	09/16/2021 19:46	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	"	"	CLV		09/20/2021 15:24	"	
Beryllium [He]	ND	0.00100	"	"	"	CLV			•	
Cadmium [He]	ND	0.00100	"	"	"	CLV		09/16/2021 19:46	"	
Chromium [He]	ND	0.00100	"	"	"	CLV				
Cobalt [He]	ND	0.00100	"	"	"	CLV		09/20/2021 15:24	"	
Lead [He]	ND	0.00100	"	"	"	CLV	"	09/16/2021 19:46	"	
Molybdenum [He]	ND	0.00100	"	"	"	CLV			"	
Selenium [NG]	ND	0.00500	"	"	"	CLV			"	

Project: CGLP CCR Semi Annual


Project Number: Semi-Annual
Project Manager: Jim Ward

Reported: 10/08/2021 08:54

Duplicate

2109187-07 (Water)

				, -	,					
Analyte	Result	MRL	Units	Dil	Batch	Analyst	Date Time Prepared	Date Time Analyzed	Method	Qualifiers
Classical Chemistry Parame										
Chloride	23.2	0.500	mg/L	1.0	1114031	DLW	09/13/2021 09:34	09/13/2021 19:59	SM 4110B 2011	
Sulfate as SO4	7.03	5.00	"	"	"	DLW	"		"	
Fluoride	ND	0.22	"	"	1110020	TKM	09/10/2021 08:35	09/10/2021 11:16	SM 4500-F C 2011	
Total Dissolved Solids	75	1	"	"	1113055	DLW	09/13/2021 13:00	09/14/2021 00:00	SM 2540 C-2011	
Metals by EPA 200 Series M	ethods ICP-AES	3								
Barium 455.403 [Radial]	0.011	0.010	mg/L	1.0	1113041	CLV	09/13/2021 09:40	09/21/2021 17:17	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	ND	0.050	"	"	"	CLV			"	
Calcium 315.887 [Radial]	0.533	0.050	"	"	"	CLV			"	
Lithium 610.362 [Axial]	ND	0.040	"	"	"	CLV			"	
Metals by EPA 200 Series M	ethods ICP-MS	[Analysis N	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	1113040	CLV	09/13/2021 09:30	09/16/2021 19:52	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	"	"	CLV		09/20/2021 15:36	"	
Beryllium [He]	ND	0.00100	"	"	"	CLV	"		"	
Cadmium [He]	ND	0.00100	"	"	"	CLV	"	09/16/2021 19:52	"	
Chromium [He]	ND	0.00100	"	"	"	CLV	"		"	
Cobalt [He]	ND	0.00100	"	"	"	CLV	"	09/20/2021 15:36	"	
Lead [He]	ND	0.00100	"	"	"	CLV		09/16/2021 19:52	"	
Molybdenum [He]	ND	0.00100	"	"	"	CLV	"		"	
Selenium [NG]	ND	0.00500	"	"		CLV	"		"	

Project: CGLP CCR Semi Annual

Project Number: Semi-Annual
Project Manager: Jim Ward

Reported: 10/08/2021 08:54

MW-12

2109187-08 (Water)

					,					
	D	MDI	11.24.	D:I	Datal	A l 1	Date Time	Date Time		0 1:5
Analyte	Result	MRL	Units	Dil	Batch	Analyst	Prepared	Analyzed	Method	Qualifiers
Classical Chemistry Parameter	eters									
Chloride	10.7	0.500	mg/L	1.0	1114031	DLW	09/13/2021 09:34	09/13/2021 20:31	SM 4110B 2011	
Sulfate as SO4	11.1	5.00	"	"	"	DLW				
Fluoride	ND	0.22	"	"	1110020	TKM	09/10/2021 08:35	09/10/2021 11:16	SM 4500-F C 2011	
Total Dissolved Solids	253	1	"	"	1113055	DLW	09/13/2021 13:00	09/14/2021 00:00	SM 2540 C-2011	
Metals by EPA 200 Series M	lethods ICP-AES									
Barium 455.403 [Radial]	0.174	0.010	mg/L	1.0	1113041	CLV	09/13/2021 09:40	09/21/2021 17:21	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	ND	0.050	"	"	"	CLV		"	"	
Calcium 315.887 [Radial]	24.6	0.050	"	"	"	CLV		"	"	
Lithium 610.362 [Axial]	ND	0.040	"	"	"	CLV		"	"	
Metals by EPA 200 Series M	lethods ICP-MS [Analysis N	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	1113040	CLV	09/13/2021 09:30	09/16/2021 19:58	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	"	"	CLV		09/20/2021 15:42	"	
Beryllium [He]	ND	0.00100	"	"	"	CLV			"	
Cadmium [He]	ND	0.00100	"	"	"	CLV		09/16/2021 19:58	"	
Chromium [He]	ND	0.00100	"	"	"	CLV			"	
Cobalt [He]	0.00665	0.00100	"	II .	"	CLV		09/20/2021 15:42	"	
Lead [He]	ND	0.00100	"	"	"	CLV		09/16/2021 19:58	"	
Molybdenum [He]	ND	0.00100	"	"	"	CLV			"	
Selenium [NG]	ND	0.00500	"	"	"	CLV			"	

Project: CGLP CCR Semi Annual

Project Number: Semi-Annual
Project Manager: Jim Ward

Reported: 10/08/2021 08:54

CCR-2

2109187-09 (Water)

				•	•					
							Date Time	Date Time		
Analyte	Result	MRL	Units	Dil	Batch	Analyst	Prepared	Analyzed	Method	Qualifiers
Classical Chemistry Parameter	rs									
Chloride	2.72	0.500	mg/L	1.0	1114031	DLW	09/13/2021 09:34	09/13/2021 22:07	SM 4110B 2011	
Sulfate as SO4	15.7	5.00	"	"	"	DLW	"		"	
Fluoride	ND	0.22	"	"	1110020	TKM	09/10/2021 08:35	09/10/2021 11:16	SM 4500-F C 2011	
Total Dissolved Solids	109	1	"	"	1113055	DLW	09/13/2021 13:00	09/14/2021 00:00	SM 2540 C-2011	
Metals by EPA 200 Series Meth	ods ICP-AES									
Barium 455.403 [Radial]	0.094	0.010	mg/L	1.0	1113041	CLV	09/13/2021 09:40	09/21/2021 17:24	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	ND	0.050	"	"	"	CLV		"	"	
Calcium 315.887 [Radial]	11.3	0.050	"	"	"	CLV			"	
Lithium 610.362 [Axial]	ND	0.040	"	"	"	CLV	"		"	
Metals by EPA 200 Series Meth	ods ICP-MS	Analysis M	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	1113040	CLV	09/13/2021 09:30	09/16/2021 20:04	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	"	"	CLV		09/20/2021 15:48	"	
Beryllium [He]	ND	0.00100	"	"	"	CLV			"	
Cadmium [He]	ND	0.00100	"	"	"	CLV		09/16/2021 20:04	"	
Chromium [He]	ND	0.00100	"	"	"	CLV	"		"	
Cobalt [He]	ND	0.00100	"	"	"	CLV		09/20/2021 15:48	"	
Lead [He]	ND	0.00100	"	"	"	CLV	"	09/16/2021 20:04	"	
Molybdenum [He]	ND	0.00100	"	"	"	CLV	"	•	"	
Selenium [NG]	ND	0.00500	"	"	"	CLV			II .	

Project: CGLP CCR Semi Annual

Project Number: Semi-Annual
Project Manager: Jim Ward

Reported: 10/08/2021 08:54

CCR-3

2109187-10 (Water)

							Date Time	Date Time		
Analyte	Result	MRL	Units	Dil	Batch	Analyst	Prepared	Analyzed	Method	Qualifiers
Classical Chemistry Parameters	i									
Chloride	5.00	0.500	mg/L	1.0	1114031	DLW	09/13/2021 09:34	09/13/2021 22:39	SM 4110B 2011	
Sulfate as SO4	292	100	"	20.0	"	DLW		09/13/2021 23:11	"	
Fluoride	0.24	0.22	"	1.0	1110020	TKM	09/10/2021 08:35	09/10/2021 11:16	SM 4500-F C 2011	
Total Dissolved Solids	436	1	"	"	1113055	DLW	09/13/2021 13:00	09/14/2021 00:00	SM 2540 C-2011	
Metals by EPA 200 Series Metho	ds ICP-AES	}								
Barium 455.403 [Radial]	0.064	0.010	mg/L	1.0	1113041	CLV	09/13/2021 09:40	09/21/2021 17:28	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	ND	0.050	"	u	"	CLV			"	
Calcium 315.887 [Radial]	30.0	0.050	"	"	"	CLV	"	"	"	
Lithium 610.362 [Axial]	0.104	0.040	"	"	"	CLV		"	"	
Metals by EPA 200 Series Metho	ds ICP-MS	[Analysis N	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	1113040	CLV	09/13/2021 09:30	09/16/2021 20:21	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	u .	"	CLV		09/23/2021 16:36	"	
Beryllium [He]	ND	0.00100	"	"	"	CLV		"	"	
Cadmium [He]	ND	0.00100	"	"	"	CLV	"	09/16/2021 20:21	"	
Chromium [He]	ND	0.00100	"	"	"	CLV			"	
Cobalt [He]	0.0206	0.00100	"	u .	"	CLV		09/23/2021 16:36	"	
Lead [He]	ND	0.00100	"	u	"	CLV		09/16/2021 20:21	"	
Molybdenum [He]	ND	0.00100	"	"	"	CLV	"		•	
Selenium [NG]	ND	0.00500	"	"	"	CLV	"		"	

Project: CGLP CCR Semi Annual

Project Number: Semi-Annual
Project Manager: Jim Ward

Reported: 10/08/2021 08:54

CCR-4

2109187-11 (Water)

				•	•					
							Date Time	Date Time		
Analyte	Result	MRL	Units	Dil	Batch	Analyst	Prepared	Analyzed	Method	Qualifiers
Classical Chemistry Parame	eters									
Chloride	7.79	0.500	mg/L	1.0	1114031	DLW	09/13/2021 09:34	09/13/2021 23:43	SM 4110B 2011	
Sulfate as SO4	33.9	10.0	"	2.0	"	DLW		09/14/2021 00:15	"	
Fluoride	ND	0.22	u	1.0	1110020	TKM	09/10/2021 08:35	09/10/2021 11:16	SM 4500-F C 2011	
Total Dissolved Solids	196	1	"	"	1113055	DLW	09/13/2021 13:00	09/14/2021 00:00	SM 2540 C-2011	
Metals by EPA 200 Series M	lethods ICP-AES									
Barium 455.403 [Radial]	0.130	0.010	mg/L	1.0	1113042	CLV	09/13/2021 09:40	09/21/2021 16:25	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	ND	0.050	"	"	"	CLV			"	
Calcium 315.887 [Radial]	20.0	0.050	"	"	"	CLV	*		"	
Lithium 610.362 [Axial]	ND	0.040	"	"	II .	CLV			"	
Metals by EPA 200 Series M	lethods ICP-MS [Analysis N	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	1113037	CLV	09/13/2021 08:50	09/16/2021 20:27	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	"	"	CLV		09/23/2021 16:42	"	
Beryllium [He]	ND	0.00100	"	"	"	CLV			"	
Cadmium [He]	ND	0.00100	"	"	"	CLV		09/16/2021 20:27	"	
Chromium [He]	ND	0.00100	"	"	"	CLV		"	"	
Cobalt [He]	0.00369	0.00100	u	"	"	CLV		09/23/2021 16:42	"	
Lead [He]	ND	0.00100	"	"	"	CLV		09/16/2021 20:27	"	
Molybdenum [He]	ND	0.00100	"	"	"	CLV	*		"	
Selenium [NG]	ND	0.00500	"	"	"	CLV			"	

Project: CGLP CCR Semi Annual

Project Number: Semi-Annual Project Manager: Jim Ward

Reported: 10/08/2021 08:54

CCR-5

2109187-12 (Water)

				107-12 (VV						
							Date Time	Date Time		
Analyte	Result	MRL	Units	Dil	Batch	Analyst	Prepared	Analyzed	Method	Qualifiers
Classical Chemistry Parameters										
Chloride	6.54	0.500	mg/L	1.0	1114031	DLW	09/13/2021 09:34	09/14/2021 00:46	SM 4110B 2011	
Sulfate as SO4	612	500	"	100.0	"	DLW		09/14/2021 01:18	u	
Fluoride	ND	0.22	"	1.0	1110020	TKM	09/10/2021 08:35	09/10/2021 11:16	SM 4500-F C 2011	
Total Dissolved Solids	834	2	"	"	1113055	DLW	09/13/2021 13:00	09/14/2021 00:00	SM 2540 C-2011	
Metals by EPA 200 Series Method	ds ICP-AES	}								
Barium 455.403 [Radial]	0.044	0.010	mg/L	1.0	1113042	CLV	09/13/2021 09:40	09/21/2021 16:29	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	0.102	0.050	"	"	"	CLV	"		"	
Calcium 315.887 [Radial]	101	0.250	"	5.0	"	CLV		09/27/2021 11:29	u	
Lithium 610.362 [Axial]	0.070	0.040	"	1.0	"	CLV		09/21/2021 16:29	"	
Metals by EPA 200 Series Method	ds ICP-MS	[Analysis N	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	1113037	CLV	09/13/2021 08:50	09/16/2021 20:33	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	"	"	CLV		09/23/2021 16:48	"	
Beryllium [He]	ND	0.00100	"	"	"	CLV	"		"	
Cadmium [He]	ND	0.00100	"	"	"	CLV		09/16/2021 20:33	"	
Chromium [He]	ND	0.00100	"	"	"	CLV			"	
Cobalt [He]	0.0105	0.00100	"	"	"	CLV		09/23/2021 16:48	"	
Lead [He]	ND	0.00100	"	"	"	CLV		09/16/2021 20:33	"	
Molybdenum [He]	ND	0.00100	"	"	"	CLV			"	
Selenium [NG]	ND	0.00500	"	"	"	CLV			"	

Project: CGLP CCR Semi Annual

Project Number: Semi-Annual Project Manager: Jim Ward

Reported: 10/08/2021 08:54

Classical Chemistry Parameters - Quality Control

Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Batch 1l10020 - Default Prep GenC	hem										
Blank (1I10020-BLK1)											
Fluoride	9/10/21 11:16	ND	0.22	mg/L							
LCS (1I10020-BS1)											
Fluoride	9/10/21 11:16	1.91	0.22	mg/L	2.00		95.5	83.3-107			
LCS Dup (1I10020-BSD1)											
Fluoride	9/10/21 11:16	1.92	0.22	mg/L	2.00		96.0	83.3-107	0.522	30	
Duplicate (1I10020-DUP1)			Source: 21091	187-01							
Fluoride	9/10/21 11:16	0.41	0.22	mg/L		0.41			0.244	20	
Duplicate (1I10020-DUP2)			Source: 21091	163-01							
Fluoride	9/10/21 11:16	0.49	0.22	mg/L		0.48			0.828	20	
Matrix Spike (1I10020-MS1)			Source: 21091	187-01							
Fluoride	9/10/21 11:16	2.32	0.22	mg/L	2.00	0.41	95.6	79.3-113			
Matrix Spike (1I10020-MS2)			Source: 21091	163-01							
Fluoride	9/10/21 11:16	2.50	0.22	mg/L	2.00	0.48	101	79.3-113			
Matrix Spike Dup (1I10020-MSD1)			Source: 21091	187-01							
Fluoride	9/10/21 11:16	2.37	0.22	mg/L	2.00	0.41	98.0	79.3-113	2.13	30	
Matrix Spike Dup (1I10020-MSD2)			Source: 21091	163-01							
Fluoride	9/10/21 11:16	2.51	0.22	mg/L	2.00	0.48	101	79.3-113	0.399	30	
Batch 1l13055 - Default Prep GenC	hem										
Blank (1I13055-BLK1)											
Total Dissolved Solids	9/14/21 0:00	ND	1	mg/L							

Project: CGLP CCR Semi Annual

Project Number: Semi-Annual
Project Manager: Jim Ward

Reported: 10/08/2021 08:54

Classical Chemistry Parameters - Quality Control

Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Batch 1113055 - Default Prep Gen	Chem										
LCS (1I13055-BS1)											
Total Dissolved Solids	9/14/21 0:00	113	1	mg/L	150		75.3	65-105			
LCS Dup (1I13055-BSD1)											
Total Dissolved Solids	9/14/21 0:00	119	1	mg/L	150		79.3	65-105	5.17	15	
Duplicate (1I13055-DUP1)			Source: 21091	63-01							
Total Dissolved Solids	9/14/21 0:00	431	1	mg/L		426			1.17	10	
Duplicate (1I13055-DUP2)			Source: 21091	87-12							
Total Dissolved Solids	9/14/21 0:00	842	2	mg/L		834			0.955	10	
Batch 1l14031 - Default Prep Gen	Chem										
Batch 1114031 - Default Prep Gen	Chem										
Blank (1I14031-BLK1)	9/13/21 13:38	ND	0.500	mg/L							
Blank (1114031-BLK1) Chloride		ND ND	0.500 5.00	mg/L "							
Blank (1114031-BLK1) Chloride Sulfate as SO4	9/13/21 13:38			mg/L "							
Blank (1114031-BLK1) Chloride Sulfate as SO4 LCS (1114031-BS1)	9/13/21 13:38			mg/L " mg/L	10.0		97.7	81.8-111			
Blank (1114031-BLK1) Chloride Sulfate as SO4 LCS (1114031-BS1) Chloride	9/13/21 13:38 9/13/21 13:38	ND	5.00	,	10.0 10.0		97.7 96.0	81.8-111 85.6-111			
·	9/13/21 13:38 9/13/21 13:38 9/13/21 12:34	ND 9.77	0.500	,							
Blank (1114031-BLK1) Chloride Sulfate as SO4 LCS (1114031-BS1) Chloride Sulfate as SO4 LCS Dup (1114031-BSD1)	9/13/21 13:38 9/13/21 13:38 9/13/21 12:34	ND 9.77	0.500	,					3.36	20	
Blank (1I14031-BLK1) Chloride Sulfate as SO4 LCS (1I14031-BS1) Chloride Sulfate as SO4	9/13/21 13:38 9/13/21 13:38 9/13/21 12:34 9/13/21 12:34	9.77 9.60	5.00 0.500 5.00	mg/L	10.0		96.0	85.6-111	3.36 1.39	20 20	
Blank (1114031-BLK1) Chloride Sulfate as SO4 LCS (1114031-BS1) Chloride Sulfate as SO4 LCS Dup (1114031-BSD1) Chloride Sulfate as SO4	9/13/21 13:38 9/13/21 13:38 9/13/21 12:34 9/13/21 12:34 9/13/21 13:06	9.77 9.60	0.500 5.00	mg/L mg/L mg/L	10.0		96.0	85.6-111			
Blank (1114031-BLK1) Chloride Sulfate as SO4 LCS (1114031-BS1) Chloride Sulfate as SO4 LCS Dup (1114031-BSD1) Chloride	9/13/21 13:38 9/13/21 13:38 9/13/21 12:34 9/13/21 12:34 9/13/21 13:06	9.77 9.60	0.500 5.00 0.500 5.00	mg/L mg/L mg/L	10.0	2.49	96.0	85.6-111			

Reported:

10/08/2021 08:54

Choctaw Generation LP 2391 Pensacola Rd. Ackerman MS, 39735 Project: CGLP CCR Semi Annual

Project Number: Semi-Annual
Project Manager: Jim Ward

Classical Chemistry Parameters - Quality Control

Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Batch 1I14031 - Default Prep GenChe	m										
Matrix Spike (1I14031-MS1)			Source: 21091	87-06							
Chloride	9/13/21 18:55	14.9	0.500	mg/L	12.0	2.49	104	75.3-124			
Sulfate as SO4	9/13/21 18:55	12.9	5.00	"	12.0	ND	108	60.6-139			
Matrix Spike Dup (1I14031-MSD1)			Source: 21091	87-06							
Chloride	9/13/21 19:27	15.5	0.500	mg/L	12.0	2.49	109	75.3-124	4.15	20	
Sulfate as SO4	9/13/21 19:27	10.9	5.00		12.0	ND	90.9	60.6-139	17.0	20	

Project: CGLP CCR Semi Annual

Project Number: Semi-Annual
Project Manager: Jim Ward

Reported: 10/08/2021 08:54

Metals by EPA 200 Series Methods ICP-AES - Quality Control

Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Batch 1I13041 - EPA 200.2 DCN 1017	Rev 10										
Blank (1113041-BLK1)											
Barium 455.403 [Radial]	9/21/21 16:00	ND	0.010	mg/L							
Boron 249.773 [Radial]	9/21/21 16:00	ND	0.050								
Calcium 315.887 [Radial]	9/21/21 16:00	ND	0.050								
Lithium 610.362 [Axial]	9/21/21 16:00	ND	0.040								
LCS (1113041-BS1)											
Barium 455.403 [Radial]	9/21/21 16:03	0.212	0.010	mg/L	0.200		106	85-115			
Boron 249.773 [Radial]	9/21/21 16:03	0.207	0.050		0.200		104	85-115			
Calcium 315.887 [Radial]	9/21/21 16:03	0.217	0.050		0.200		109	85-115			
Lithium 610.362 [Axial]	9/21/21 16:03	0.259	0.040		0.200		129	85-115			L1
LCS Dup (1113041-BSD1)											
Barium 455.403 [Radial]	9/21/21 16:07	0.197	0.010	mg/L	0.200		98.3	85-115	7.43	20	
Boron 249.773 [Radial]	9/21/21 16:07	0.198	0.050		0.200		98.9	85-115	4.67	20	
Calcium 315.887 [Radial]	9/21/21 16:07	0.205	0.050		0.200		103	85-115	5.63	20	
Lithium 610.362 [Axial]	9/21/21 16:07	0.185	0.040		0.200		92.4	85-115	33.3	20	L3
Duplicate (1I13041-DUP1)			Source: 21091	87-01							
Calcium 315.887 [Radial]	9/27/21 11:21	49.6	0.100	mg/L		50.9			2.62	20	
Matrix Spike (1I13041-MS1)			Source: 21091	87-01							
Barium 455.403 [Radial]	9/21/21 16:51	0.261	0.010	mg/L	0.200	0.084	88.8	70-130			
Boron 249.773 [Radial]	9/21/21 16:51	0.217	0.050		0.200	0.029	93.9	70-130			
Lithium 610.362 [Axial]	9/21/21 16:51	0.265	0.040		0.200	0.087	88.8	70-130			
Matrix Spike Dup (1I13041-MSD1)			Source: 21091	87-01							
Barium 455.403 [Radial]	9/21/21 16:55	0.271	0.010	mg/L	0.200	0.084	93.4	70-130	3.51	20	
Boron 249.773 [Radial]	9/21/21 16:55	0.218	0.050		0.200	0.029	94.6	70-130	0.712	20	
Lithium 610.362 [Axial]	9/21/21 16:55	0.266	0.040		0.200	0.087	89.3	70-130	0.375	20	

Project: CGLP CCR Semi Annual

Project Number: Semi-Annual
Project Manager: Jim Ward

Reported: 10/08/2021 08:54

Metals by EPA 200 Series Methods ICP-AES - Quality Control

Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Batch 1l13042 - EPA 200.2 DCN 1017	Rev 10										
Blank (1I13042-BLK1)											
Barium 455.403 [Radial]	9/21/21 16:00	ND	0.010	mg/L							
Boron 249.773 [Radial]	9/21/21 16:00	ND	0.050								
Calcium 315.887 [Radial]	9/21/21 16:00	ND	0.050								
Lithium 610.362 [Axial]	9/21/21 16:00	ND	0.040								
LCS (1I13042-BS1)											
Barium 455.403 [Radial]	9/21/21 16:03	0.212	0.010	mg/L	0.200		106	85-115			
Boron 249.773 [Radial]	9/21/21 16:03	0.207	0.050		0.200		104	85-115			
Calcium 315.887 [Radial]	9/21/21 16:03	0.217	0.050		0.200		109	85-115			
Lithium 610.362 [Axial]	9/21/21 16:03	0.259	0.040		0.200		129	85-115			L1
LCS Dup (1113042-BSD1)											
Barium 455.403 [Radial]	9/21/21 16:07	0.197	0.010	mg/L	0.200		98.3	85-115	7.43	20	
Boron 249.773 [Radial]	9/21/21 16:07	0.198	0.050		0.200		98.9	85-115	4.67	20	
Calcium 315.887 [Radial]	9/21/21 16:07	0.205	0.050		0.200		103	85-115	5.63	20	
Lithium 610.362 [Axial]	9/21/21 16:07	0.185	0.040		0.200		92.4	85-115	33.3	20	L3
Duplicate (1I13042-DUP1)			Source: 21091	63-01							
Calcium 315.887 [Radial]	9/21/21 16:22	2.93	0.050	mg/L		2.83			3.47	20	
Matrix Spike (1I13042-MS1)			Source: 21091	63-01							
Barium 455.403 [Radial]	9/21/21 16:18	0.217	0.010	mg/L	0.200	0.011	103	70-130			
Boron 249.773 [Radial]	9/21/21 16:18	0.717	0.050		0.200	0.477	120	70-130			
Lithium 610.362 [Axial]	9/21/21 16:18	0.390	0.040		0.400	0.014	94.0	70-130			
Matrix Spike Dup (1113042-MSD1)			Source: 21091	63-01							
Barium 455.403 [Radial]	9/21/21 16:22	0.206	0.010	mg/L	0.200	0.011	97.8	70-130	4.80	20	
Boron 249.773 [Radial]	9/21/21 16:22	0.657	0.050		0.200	0.477	90.0	70-130	8.66	20	
Lithium 610.362 [Axial]	9/21/21 16:22	0.371	0.040		0.400	0.014	89.3	70-130	4.95	20	
Litnium 610.362 [Axial]	9/21/21 16:22	0.371	0.040	-	0.400	0.014	89.3	70-130	4.95	20	

Project: CGLP CCR Semi Annual

Project Number: Semi-Annual Reported:

Project Manager: Jim Ward 10/08/2021 08:54

Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Batch 1113037 - EPA 200.2 DC	N 1017 Rev 10										
Blank (1I13037-BLK1)											
Antimony [He]	9/16/21 17:03	ND	0.00200	mg/L							
Arsenic [NG]	9/20/21 14:25	ND	0.00200								
Beryllium [He]	9/20/21 14:25	ND	0.00100								
Cadmium [He]	9/16/21 17:03	ND	0.00100								
Chromium [He]	9/16/21 17:03	ND	0.00100								
Cobalt [He]	9/20/21 14:25	ND	0.00100								
Lead [He]	9/16/21 17:03	ND	0.00100								
Molybdenum [He]	9/16/21 17:03	ND	0.00100								
Selenium [NG]	9/16/21 17:03	ND	0.00500								
Selenium [He]	9/16/21 17:03	ND	0.00100								
LCS (1113037-BS1)											
Antimony [He]	9/16/21 17:09	0.121	0.00200	mg/L	0.100		121	85-115			L1
Arsenic [NG]	9/20/21 14:31	0.116	0.00200		0.100		116	85-115			L1
Beryllium [He]	9/20/21 14:31	0.123	0.00100		0.100		123	85-115			L1
Cadmium [He]	9/16/21 17:09	0.114	0.00100		0.100		114	85-115			
Chromium [He]	9/16/21 17:09	0.117	0.00100		0.100		117	85-115			L1
Cobalt [He]	9/20/21 14:31	0.125	0.00100		0.100		125	85-115			L1
Lead [He]	9/16/21 17:09	0.115	0.00100		0.100		115	85-115			
Molybdenum [He]	9/16/21 17:09	0.114	0.00100		0.100		114	85-115			
Selenium [NG]	9/16/21 17:09	0.109	0.00500		0.100		109	85-115			
Selenium [He]	9/16/21 17:09	0.100	0.00100		0.100		100	85-115			
LCS Dup (1l13037-BSD1)											
Antimony [He]	9/16/21 17:15	0.110	0.00200	mg/L	0.100		110	85-115	9.14	20	
Arsenic [NG]	9/20/21 14:37	0.108	0.00200		0.100		108	85-115	6.94	20	
Beryllium [He]	9/20/21 14:37	0.114	0.00100		0.100		114	85-115	7.40	20	
Cadmium [He]	9/16/21 17:15	0.103	0.00100		0.100		103	85-115	9.55	20	
Chromium [He]	9/16/21 17:15	0.106	0.00100		0.100		106	85-115	10.4	20	
Cobalt [He]	9/20/21 14:37	0.114	0.00100		0.100		114	85-115	8.56	20	
Lead [He]	9/16/21 17:15	0.105	0.00100		0.100		105	85-115	9.06	20	
Molybdenum [He]	9/16/21 17:15	0.105	0.00100		0.100		105	85-115	7.91	20	
Selenium [NG]	9/16/21 17:15	0.102	0.00500		0.100		102	85-115	6.09	20	
Selenium [He]	9/16/21 17:15	0.093	0.00100		0.100		93.0	85-115	7.36	20	

Project: CGLP CCR Semi Annual

Project Number: Semi-Annual Reported:

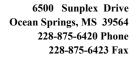
Project Manager: Jim Ward 10/08/2021 08:54

Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Batch 1113037 - EPA 200.2 DC	N 1017 Rev 10										
Matrix Spike (1I13037-MS1)			Source: 21091	62-01							
Antimony [He]	9/16/21 17:26	0.111	0.00200	mg/L	0.100	0.0005	110	70-130			
Beryllium [He]	9/20/21 14:48	0.113	0.00100		0.100	ND	113	70-130			
Cadmium [He]	9/16/21 17:26	0.103	0.00100		0.100	0.0007	102	70-130			
Chromium [He]	9/16/21 17:26	0.107	0.00100		0.100	0.001	106	70-130			
Cobalt [He]	9/20/21 14:48	0.111	0.00100		0.100	ND	111	70-130			
ead [He]	9/16/21 17:26	0.106	0.00100		0.100	0.002	105	70-130			
Molybdenum [He]	9/16/21 17:26	0.145	0.00100		0.100	0.036	109	70-130			
Selenium [He]	9/16/21 17:26	0.092	0.00100		0.100	0.0006	90.9	70-130			
Selenium [NG]	9/16/21 17:26	0.097	0.00500		0.100	0.002	97.0	70-130			
Matrix Spike Dup (1I13037-MS	D1)		Source: 21091	62-01							
ntimony [He]	9/16/21 17:32	0.111	0.00200	mg/L	0.100	0.0005	110	70-130	0.0104	20	
eryllium [He]	9/20/21 14:54	0.116	0.00100		0.100	ND	116	70-130	2.22	20	
admium [He]	9/16/21 17:32	0.103	0.00100		0.100	0.0007	103	70-130	0.462	20	
Chromium [He]	9/16/21 17:32	0.109	0.00100		0.100	0.001	108	70-130	1.81	20	
Cobalt [He]	9/20/21 14:54	0.113	0.00100		0.100	ND	113	70-130	1.43	20	
ead [He]	9/16/21 17:32	0.107	0.00100		0.100	0.002	105	70-130	0.481	20	
Molybdenum [He]	9/16/21 17:32	0.148	0.00100		0.100	0.036	111	70-130	1.58	20	
Selenium [He]	9/16/21 17:32	0.090	0.00100		0.100	0.0006	89.1	70-130	2.02	20	
elenium [NG]	9/16/21 17:32	0.097	0.00500		0.100	0.002	97.0	70-130	0.0720	20	
Batch 1I13040 - EPA 200.2 DC	N 1017 Rev 10										
Blank (1I13040-BLK1)											
intimony [He]	9/16/21 18:48	ND	0.00200	mg/L							
rsenic [NG]	9/20/21 14:25	ND	0.00200								
eryllium [He]	9/20/21 14:25	ND	0.00100								
Cadmium [He]	9/16/21 18:48	ND	0.00100								
Chromium [He]	9/16/21 18:48	ND	0.00100								
Cobalt [He]	9/20/21 14:25	ND	0.00100								
_ead [He]	9/16/21 18:48	ND	0.00100								
Molybdenum [He]	9/16/21 18:48	ND	0.00100								
violybuerium [nej											

Project: CGLP CCR Semi Annual

Project Number: Semi-Annual Reported:

Project Manager: Jim Ward 10/08/2021 08:54


Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Batch 1I13040 - EPA 200.2 DCN 10	17 Rev 10										
LCS (1I13040-BS1)											
Antimony [He]	9/20/21 14:31	0.116	0.00200	mg/L	0.100		116	85-115			L1
Arsenic [NG]	9/20/21 14:31	0.116	0.00200		0.100		116	85-115			L1
Beryllium [He]	9/20/21 14:31	0.123	0.00100		0.100		123	85-115			L1
Cadmium [He]	9/20/21 14:31	0.121	0.00100		0.100		121	85-115			L1
Chromium [He]	9/20/21 14:31	0.123	0.00100		0.100		123	85-115			L1
Cobalt [He]	9/20/21 14:31	0.125	0.00100		0.100		125	85-115			L1
Lead [He]	9/20/21 14:31	0.119	0.00100		0.100		119	85-115			L1
Molybdenum [He]	9/20/21 14:31	0.119	0.00100		0.100		119	85-115			L1
Selenium [NG]	9/16/21 18:53	0.110	0.00500		0.100		110	85-115			
LCS Dup (1l13040-BSD1)											
Antimony [He]	9/16/21 18:59	0.112	0.00200	mg/L	0.100		112	85-115	3.31	20	
Arsenic [NG]	9/20/21 14:37	0.108	0.00200		0.100		108	85-115	6.94	20	
Beryllium [He]	9/20/21 14:37	0.114	0.00100		0.100		114	85-115	7.40	20	
Cadmium [He]	9/16/21 18:59	0.106	0.00100		0.100		106	85-115	13.1	20	
Chromium [He]	9/16/21 18:59	0.110	0.00100		0.100		110	85-115	11.1	20	
Cobalt [He]	9/20/21 14:37	0.114	0.00100		0.100		114	85-115	8.56	20	
Lead [He]	9/16/21 18:59	0.107	0.00100		0.100		107	85-115	10.8	20	
Molybdenum [He]	9/16/21 18:59	0.107	0.00100		0.100		107	85-115	10.4	20	
Selenium [NG]	9/16/21 18:59	0.104	0.00500		0.100		104	85-115	5.44	20	
Matrix Spike (1I13040-MS1)			Source: 210918	37-01							
Antimony [He]	9/16/21 19:11	0.111	0.00200	mg/L	0.100	ND	111	70-130			
Arsenic [NG]	9/27/21 16:35	0.109	0.00200		0.100	0.0007	109	70-130			
Beryllium [He]	9/27/21 16:35	0.098	0.00100		0.100	0.004	94.7	70-130			
Cadmium [He]	9/16/21 19:11	0.099	0.00100		0.100	0.0007	97.8	70-130			
Chromium [He]	9/16/21 19:11	0.096	0.00100		0.100	ND	95.7	70-130			
Cobalt [He]	9/27/21 16:35	0.111	0.00100		0.100	0.018	92.6	70-130			
ead [He]	9/16/21 19:11	0.114	0.00100		0.100	0.001	113	70-130			
Nolybdenum [He]	9/16/21 19:11	0.113	0.00100		0.100	0.0004	112	70-130			
Selenium [NG]	9/16/21 19:11	0.098	0.00500		0.100	0.003	95.1	70-130			

Project: CGLP CCR Semi Annual

Project Number: Semi-Annual Reported:
Project Manager: Jim Ward 10/08/2021 08:54

Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Batch 1I13040 - EPA 200.2 DCN 10	017 Rev 10										
Matrix Spike Dup (1I13040-MSD1)			Source: 210918	37-01							
Antimony [He]	9/16/21 19:17	0.111	0.00200	mg/L	0.100	ND	111	70-130	0.671	20	
Arsenic [NG]	9/27/21 16:41	0.109	0.00200		0.100	0.0007	109	70-130	0.409	20	
Beryllium [He]	9/27/21 16:41	0.103	0.00100		0.100	0.004	98.8	70-130	4.05	20	
Cadmium [He]	9/16/21 19:17	0.098	0.00100		0.100	0.0007	97.5	70-130	0.345	20	
Chromium [He]	9/16/21 19:17	0.097	0.00100		0.100	ND	97.4	70-130	1.80	20	
Cobalt [He]	9/27/21 16:41	0.114	0.00100		0.100	0.018	95.4	70-130	2.54	20	
Lead [He]	9/16/21 19:17	0.112	0.00100		0.100	0.001	111	70-130	1.28	20	
Molybdenum [He]	9/16/21 19:17	0.114	0.00100		0.100	0.0004	114	70-130	0.997	20	
Selenium [NG]	9/16/21 19:17	0.099	0.00500		0.100	0.003	96.1	70-130	0.974	20	

Choctaw Generation LP 2391 Pensacola Rd.

Ackerman MS, 39735

Project: CGLP CCR Semi Annual

Project Number: Semi-Annual
Project Manager: Jim Ward

Reported: 10/08/2021 08:54

Certified Analyses Included in this Report

Analyte	Certification Code
EPA 200.7 Rev 4.4 in Water	
Aluminum 237.312 [Radial]	C01,C02
Aluminum 394.401 [Radial]	C01,C02
Aluminum 396.152 [Radial]	C01,C02
Antimony 206.833 [Axial]	C01,C02
Arsenic 193.759 [Axial]	C01,C02
Barium 455.403 [Radial]	C01,C02
Barium 493.409 [Radial]	C01,C02
Beryllium 313.042 [Axial]	C01,C02
Boron 249.773 [Radial]	C01,C02
Cadmium 228.802 [Axial]	C01,C02
Calcium 315.887 [Radial]	C01,C02
Chromium 283.563 [Axial]	C01,C02
Cobalt 228.616 [Axial]	C01,C02
Copper 324.754 [Axial]	C01,C02
Iron 259.940 [Axial]	C01,C02
Iron 259.940 [Radial]	C01,C02
Lead 220.353 [Axial]	C01,C02
Lithium 610.362 [Axial]	C01,C02
Magnesium 285.213 [Radial]	C01,C02
Manganese 257.610 [Axial]	C01,C02
Molybdenum 202.030 [Axial]	C01,C02
Nickel 231.604 [Axial]	C01,C02
Potassium 766.490 [Radial]	C01,C02
Phosphorus 178.284 [Axial]	C01,C02
Phosphorus 178.284 [Radial]	C01,C02
Selenium 196.090 [Axial]	C01,C02
Silver 328.068 [Axial]	C01,C02
Sodium 589.592 [Axial]	C01,C02
Sodium 589.592 [Radial]	C01,C02
Strontium 346.446 [Radial]	C01,C02
Strontium 421.552 [Radial]	C01,C02
Thallium 190.856 [Axial]	C01,C02
Tin 189.989 [Axial]	C01,C02
Titanium 334.941 [Axial]	C01,C02
Vanadium 309.311 [Axial]	C01,C02
Zinc 213.856 [Axial]	C01,C02
EPA 200.8 Rev 5.4 in Water	
Aluminum [He]	C01,C02
Antimony [He]	C01,C02
Antimony [HHe]	C01,C02
Antimony [NG]	C01,C02

Choctaw Generation LP	Project: CGLP CCR Semi Annual	
2391 Pensacola Rd.	Project Number: Semi-Annual	Reported:
Ackerman MS, 39735	Project Manager: Jim Ward	10/08/2021 08:54

Arsenic [He]	C01
Arsenic [HHe]	C01,C02
Arsenic [NG]	C01,C02
Barium [He]	C01,C02
Beryllium [He]	C01,C02
Boron [NG]	C01,C02
Cadmium [He]	C01
Cadmium [HHe]	C01,C02
Cadmium [NG]	C01,C02
Chromium [He]	C01,C02
Cobalt [He]	C01,C02
Copper [He]	C01,C02
Copper [NG]	C01,C02
Iron [He]	C01,C02
Lead [He]	C01,C02
Lead [NG]	C01,C02
Manganese [He]	C01,C02
Molybdenum [He]	C01,C02
Nickel [He]	C01,C02
Selenium [He]	C01
Selenium [HHe]	C01,C02
Selenium [NG]	C01,C02
Silver [He]	C01,C02
Silver [NG]	C01,C02
Strontium [He]	C01,C02
Thallium [He]	C01,C02
Vanadium [He]	C01,C02
Zinc [He]	C01,C02

SM 2540 C-2011 in Water

Total Dissolved Solids C01,C02

^{**}Only compounds included in this list are associated with accredited analyses**

Project: CGLP CCR Semi Annual

Project Number: Semi-Annual
Project Manager: Jim Ward

Reported: 10/08/2021 08:54

Laboratory Accreditations/Certifications

Code Description		Number	Expires
C01	LA Environmental Lab Accreditation Program	01960	06/30/2022
C02	The NELAC Institute (NELAP)	TNI01397	06/30/2022
C03	Ms Dept of Health (Drinking Water Microbiology)	MS00021	12/31/2021
C04	Ms Dept of Health (Drinking Water Chemistry)	MS00021	12/31/2021
C05	Ms DEQ Lead Firm Certification	PBF-00000028	03/24/2022
C06	MsDEQ Asbestos Inspector : C.D. Bingham	ABI-00001348	02/12/2022
C07	MsDEQ Air Monitor : C.D. Bingham	AM-011572	02/13/2022
C08	MsDEQ Asbestos Inspector: C. W. Meins	ABI-00001821	09/09/2022
C09	MsDEQ Air Monitor: C.W. Meins	AM-011189	02/13/2022
C14	MsDEQ Lead Paint Inspector : C.D. Bingham	PBI-00003690	03/24/2022
C15	MsDEQ Lead Paint Inspector : C.W. Meins	PBI-00001740	03/24/2022

Report Definitions

TNC DET ND NR RPD	Too Numerous To Count Analyte DETECTED Analyte NOT DETECTED at or above the minimum reporting limit Not Reported Relative Percent Difference
ICV CCV SSV LCS MS MSD	Initial Calibration Verification Continuing Calibration Verification Standard Secondary Source Verification Standard Lab Control Spike - Lab matrix prepared with known concentration of analyte/s of interest analyzed by method. Matrix Spike - Sample prepared with known concentration of analyte/s of interest analyzed by method. Matrix Spike Duplicate - Duplicate sample prepared with known concentration of analyte/s of interest analyzed by method.
MRL %REC Batch Matrix Surrogate	Minimum Reporting Limit Percentage Recovery of known concentration added to matrix Group of samples prepared for analysis not to exceed 20 samples. Material containing analyte/s of interest Analyte added to sample to determine extraction efficiency of method.

Choctaw Generation LP Project: CGLP CCR Semi Annual

2391 Pensacola Rd. Project Number: Semi-Annual Reported:
Ackerman MS, 39735 Project Manager: Jim Ward 10/08/2021 08:54

Analyst Initials Key

<u>FullName</u>	<u>Initials</u>
Charles L Vorhoff	CLV
Dortha L. Wells	DLW
Sarah E. Tomek	SET
Teresa Meins	TKM
Tina Tomek	TPT
Zain A Kleist	ZAK

Print Com-

(228) 875-6420 FAX (228) 875-6423 PO Box 1410, Ocean Springs, MS 39566-1410

> Chain of Custody Record Lab ID# MS00021

TNI ID # TNI01397 PM /0+2

M-M Lab 2109187

							,	,						
Company Name: Choctaw Generation Limited Partnership LLLP	rship LLLP	Project Manager:	Manage	:T			Jim.	Jim Ward	۵			Turn A	Turn Around Time & Reporting	Reporting
Address: 2391 Pensacola Rd.		Purchase Order #:	se Orde	#						i		X Normal	Our normal turn around time is 10 working days *All rush orderPh	working daysPhone
City: Ackerman State: MS Zip: 39	39735	Email Address :	ddress									Next Day*	requests must be	Mail Fax
Phone: 662-387-5758		Sampler Name Printed:	r Name	Printed	7	2	25	7	77	Com	m Chi	Other*	pilot approved.	Email
Fax:		Sampler Name Signed:	r Name	Signed	7)	9	2	11	QC Level: Level 1	Level 2	Level 3
				Lie	List Analyses	iyses	Req	Requested	Ď			Field 1	Testing	
Project Name: CGLP CCR		Preservative:	C) We	de,	nic	um	r		\rightarrow	6 &		Field Test Field Tes	Field Test Field Test Field Test	Matrix: W = Water
Project #: Semi-Annual		ontaine	osite (C	le, Fluorio	ony, Arsei	Boron, Berylli	Caloium	, Calcium Cobalt hium	bendum,	adium 226 228				DW = Drinking Water
Sampling Sample Identification	Matrix Code	# of C	Comp	Chloric				(Moly	Total Ra				50 = Soil SE = Sediment
6-MW 6-MW	M 35.6	4	G	\times	×	×	×	X	X	×				L = Liquid
OW-2 09/68/21	141 M	4	ଜ	\times	×	X	X	X	\times	X				A ≈ Air O = Oil
	W St. 60	4	റ	X	X	X	X	X	\times	×				SL = Sludge
12/80/bo	M Q0:	4	G	×	×	×	X	X	\times	×				
	12:0 S W	4	G	\times	X	×	X	\times	\times	X				
Field Blank	12:35 W	4	G	X	X	\times	X	X	\times	^ ×				Preservation:
Duplicate	W	4	G	X	X	×	\times	\times	\times	×				1= H25O4 2= H3PO4
MW-12 09/08/21	M &E:01	4	G	\times	×	X	X	X	\times	×				3=NaOH
CCR-2	12:30 W	4	G	X	X	×	X	X	\times	×				4=ZnC4H1006 &
CCR-3 9/08/21 C	Ø8:38 W	4	G	\times	X	X	×	X	X	×				NaOH
CCR-4 09/1/21	8	4	G	\times	^ ×	×	X	\times	\times	×				6=HNO3
Received on Ice Y/N Thermometer#	Cooler #_		Rec	Receipt 1	Temp Corrected	Corre	cted(s	()						/=Na252O3 8=HCl
Date & Time By:			San	Sample_	8	Blank	XC	Cooler_		Į.		**Alf Temps are Corrected Values**	rected Values**	9=NaHSO4
Printed Name		Signature	ture	No. of Lot		Company	pany	D	Date	Time		Notes:		
Relinquished by Cam Clark	7	5	1	11		0	~	-0	12/5/1	16:10	ō	CM CM CM CM CM CM CM CM	517	0.9.0
Received by Frd EX								+	1	1		CONTOR	20.	0100
Relinquished by AFRILES -	8							-				COOL # 1110	1111	
Received by SWah Toma	V8/ >	M	0	me	V	7	M	9	04/2	109	25	COOKY# 1152	1152	1.4.0
Relinquished by			C						•	_				
Received by														

Physical Address: 6500 Sunplex Drive, Ocean Springs MS 39564

Phone:

Project #:

Chain of Custody Record

TNI ID # TNI01397 **LELAP ID # 01960** Lab ID# MS00021

Print Form

Received by Relinquished by Received by Relinquished by Received on Ice Y/N City: Ackerman Date & Time PO Box 1410, Ocean Springs, MS 39566-1410 (228) 875-6420 FAX (228) 875-6423 Project Name: Address: 2391 Pensacola Rd. Company Name: Choctaw Generation Limited Partnership LLLP www.micromethodslab.com 662-387-5758 Sample Identification Thermometer# Semi-Annual Printed Name CGLP CCR B K 09/08/21 08:30 Sampling Date/Time Zip: Cooler # Matrix Code 8 # of Containers Sampler Name Signed: Sampler Name Printed: Project Manager: Preservative: Email Address Purchase Order #: Grab (G) or Composite (C) Receipt Temp Corrected(°C) Sample **TDS** Chloride, Fluoride, List Analyses Requested Sulfate Antimony, Arsenic Blank Cooler Company Jim Ward Lead, Calcium, Cobalt なる Lithium 12/8/ Molybendum, Selenium 63 6,0 Time Total Radium 226 & 228 Notes: **All Temps are Corrected Values** Field Test | Field Test | Field Test | Field Test QC Level: Level 1 Normal
 N _Other* __Next Day* _2nd Day* Our normal turn around time is 10 working days ₽ Field Testing Turn Around Time & Reporting requests must be prior approved *All rush order Level 2 ₽# Level 3 A = Air O = Oil SL = Sludge S = Solid Matrix: W=Water 9=NaHSO4 7=Na252O3 6=HNO3 5=ZnC4H10O6 & 4=ZnC4H1006 2= H3PO4 Preservation: DW = Drinking 3=NaOH L=Liquid SO = Soil 1= H2504 SE = Sediment Mail Fax Phone

Physical Address: 6500 Sunplex Drive, Ocean Springs MS 39564

Received by Relinquished by

(724)850-5600

October 07, 2021

Tina Tomek Micro-Methods Lab 6500 Sunplex Drive Ocean Springs, MS 39564

RE: Project: 2109187

Pace Project No.: 30441480

Dear Tina Tomek:

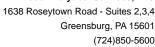
Enclosed are the analytical results for sample(s) received by the laboratory on September 16, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Greensburg

If you have any questions concerning this report, please feel free to contact me.

Sincerely,


Carin a. Ferris

Carin Ferris carin.ferris@pacelabs.com 724-850-5615 Project Manager

Enclosures

cc: Accounts Payable, Micro-Methods Lab

CERTIFICATIONS

Project: 2109187 Pace Project No.: 30441480

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734 Arkansas Certification

California Certification #: 04222CA Colorado Certification #: PA01547

Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET

Guam Certification Hawaii Certification Idaho Certification Illinois Certification

Indiana Certification Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235 Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617 New Jersey/TNI Certification #: PA051

New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249

Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification
Tennessee Certification #: 02867

Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143

West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

(724)850-5600

SAMPLE SUMMARY

Project: 2109187
Pace Project No.: 30441480

Lab ID	Sample ID	Matrix	Date Collected	Date Received
30441480001	2109187-01	Water	09/08/21 09:40	09/16/21 10:10
30441480002	2109187-02	Water	09/08/21 11:41	09/16/21 10:10
30441480003	2109187-03	Water	09/08/21 09:45	09/16/21 10:10
30441480004	2109187-04	Water	09/08/21 11:00	09/16/21 10:10
30441480005	2109187-05	Water	09/08/21 12:05	09/16/21 10:10
30441480006	2109187-06	Water	09/08/21 12:35	09/16/21 10:10
30441480007	2109187-07	Water	09/08/21 00:00	09/16/21 10:10
30441480008	2109187-08	Water	09/08/21 10:38	09/16/21 10:10
30441480009	2109187-09	Water	09/08/21 12:50	09/16/21 10:10
30441480010	2109187-10	Water	09/08/21 08:38	09/16/21 10:10
30441480011	2109187-11	Water	09/08/21 14:00	09/16/21 10:10
30441480012	2109187-12	Water	09/08/21 08:27	09/16/21 10:10

SAMPLE ANALYTE COUNT

Project: 2109187
Pace Project No.: 30441480

Lab ID	Sample ID	Method	Analysts	Analytes Reported
30441480001	2109187-01	EPA 903.1	SLC	1
		EPA 904.0	JC2	1
30441480002	2109187-02	EPA 903.1	SLC	1
		EPA 904.0	JC2	1
30441480003	2109187-03	EPA 903.1	SLC	1
		EPA 904.0	JC2	1
30441480004	2109187-04	EPA 903.1	SLC	1
		EPA 904.0	JC2	1
30441480005	2109187-05	EPA 903.1	SLC	1
		EPA 904.0	JC2	1
30441480006	2109187-06	EPA 903.1	SLC	1
		EPA 904.0	JC2	1
30441480007	2109187-07	EPA 903.1	SLC	1
		EPA 904.0	JC2	1
30441480008	2109187-08	EPA 903.1	SLC	1
		EPA 904.0	JC2	1
30441480009	2109187-09	EPA 903.1	SLC	1
		EPA 904.0	JC2	1
30441480010	2109187-10	EPA 903.1	SLC	1
		EPA 904.0	JC2	1
30441480011	2109187-11	EPA 903.1	SLC	1
		EPA 904.0	JC2	1
30441480012	2109187-12	EPA 903.1	SLC	1
		EPA 904.0	JC2	1

PASI-PA = Pace Analytical Services - Greensburg

1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

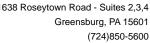
ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: 2109187
Pace Project No.: 30441480

Sample: 2109187-01 Lab ID: 30441480001 Collected: 09/08/21 09:40 Received: 09/16/21 10:10 Matrix: Water PWS: Site ID: Sample Type: Comments: • One bottle received empty. **Parameters** Method Act ± Unc (MDC) Carr Trac Units Analyzed CAS No. Qual Pace Analytical Services - Greensburg EPA 903.1 $0.911 \pm 0.736 \quad (0.411)$ Radium-226 pCi/L 10/06/21 14:16 13982-63-3 C:NA T:99% Pace Analytical Services - Greensburg EPA 904.0 0.251 ± 0.629 (1.41) Radium-228 pCi/L 10/05/21 14:37 15262-20-1 C:73% T:89% Sample: 2109187-02 Lab ID: 30441480002 Collected: 09/08/21 11:41 Received: 09/16/21 10:10 PWS: Site ID: Sample Type: **Parameters** Method Act ± Unc (MDC) Carr Trac Units CAS No. Analyzed Qual Pace Analytical Services - Greensburg EPA 903.1 $0.000 \pm 0.282 \quad (0.455)$ Radium-226 pCi/L 10/06/21 14:27 13982-63-3 C:NA T:93% Pace Analytical Services - Greensburg EPA 904.0 $0.655 \pm 0.388 \quad (0.710)$ Radium-228 pCi/L 10/05/21 14:37 15262-20-1 C:74% T:91% Sample: 2109187-03 Lab ID: 30441480003 Collected: 09/08/21 09:45 Received: 09/16/21 10:10 Matrix: Water Site ID: PWS: Sample Type: Act ± Unc (MDC) Carr Trac **Parameters** Method Units Analyzed CAS No. Qual Pace Analytical Services - Greensburg EPA 903.1 0.524 ± 0.383 (0.428) Radium-226 pCi/L 10/06/21 14:16 13982-63-3 C:NA T:98% Pace Analytical Services - Greensburg Radium-228 EPA 904.0 $1.24 \pm 0.502 \quad (0.809)$ 10/05/21 14:35 15262-20-1 pCi/L C:72% T:92% Lab ID: 30441480004 Sample: 2109187-04 Received: 09/16/21 10:10 Collected: 09/08/21 11:00 Matrix: Water PWS: Site ID: Sample Type: **Parameters** Method Act ± Unc (MDC) Carr Trac Units Analyzed CAS No. Qual Pace Analytical Services - Greensburg EPA 903.1 $0.377 \pm 0.351 \quad (0.462)$ pCi/L Radium-226 10/06/21 14:16 13982-63-3 C:NA T:98% Pace Analytical Services - Greensburg EPA 904.0 $0.599 \pm 0.429 \quad (0.833)$ Radium-228 pCi/L 10/05/21 14:35 15262-20-1 C:67% T:85%

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

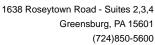

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: 2109187
Pace Project No.: 30441480

Sample: 2109187-05 PWS:	Lab ID: 304414		Received:	09/16/21 10:10 M	fatrix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical S	ervices - Greensburg				
Radium-226	EPA 903.1	0.000 ± 0.279 (0.625) C:NA T:104%	pCi/L	10/06/21 14:16	13982-63-3	
	Pace Analytical S	ervices - Greensburg				
Radium-228	EPA 904.0	0.710 ± 0.413 (0.763) C:74% T:87%	pCi/L	10/05/21 14:35	15262-20-1	
Sample: 2109187-06	Lab ID: 304414		Received:	09/16/21 10:10 M	Matrix: Water	
PWS: Comments: • One bottle rece	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
- arameters	· · · · · · · · · · · · · · · · · · ·	_ `	Office	——————————————————————————————————————	- OAO 110.	Quai
Radium-226	EPA 903.1	ervices - Greensburg 0.303 ± 0.692 (0.411) C:NA T:95%	pCi/L	10/06/21 14:16	13982-63-3	
	Pace Analytical S	ervices - Greensburg				
Radium-228	EPA 904.0	-0.210 ± 0.764 (1.80) C:72% T:90%	pCi/L	10/05/21 14:35	15262-20-1	
Sample: 2109187-07 PWS:	Lab ID: 30441 4 Site ID:	180007 Collected: 09/08/21 00:00 Sample Type:	Received:	09/16/21 10:10 M	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	•	ervices - Greensburg				
Radium-226	EPA 903.1	0.414 ± 0.430 (0.640) C:NA T:100%	pCi/L	10/06/21 14:16	13982-63-3	
	•	ervices - Greensburg				
Radium-228	EPA 904.0	0.934 ± 0.452 (0.787) C:68% T:98%	pCi/L	10/05/21 14:35	15262-20-1	
Sample: 2109187-08 PWS:	Lab ID: 30441 4 Site ID:	180008 Collected: 09/08/21 10:38 Sample Type:	Received:	09/16/21 10:10 N	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical S	ervices - Greensburg				
Radium-226	EPA 903.1	0.237 ± 0.521 (0.941) C:NA T:99%	pCi/L	10/06/21 14:16	13982-63-3	
	Pace Analytical S	ervices - Greensburg				
Radium-228	EPA 904.0	0.964 ± 0.447 (0.757) C:74% T:86%	pCi/L	10/05/21 14:35	15262-20-1	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.


ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: 2109187 Pace Project No.: 30441480

Sample: 2109187-09 PWS:	Lab ID: 3044 1 Site ID:	1480009 Collected: 09/08/21 12:50 Sample Type:	Received:	09/16/21 10:10 M	latrix: Water	
			l laita	A l	CACNE	01
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	•	Services - Greensburg				
Radium-226	EPA 903.1	0.331 ± 0.392 (0.616) C:NA T:99%	pCi/L	10/06/21 14:38	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 904.0	0.577 ± 0.426 (0.836) C:70% T:86%	pCi/L	10/05/21 14:35	15262-20-1	
Sample: 2109187-10	Lab ID: 30441		Received:	09/16/21 10:10 M	latrix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 903.1	0.380 ± 0.395 (0.589) C:NA T:94%	pCi/L	10/06/21 14:38	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 904.0	0.853 ± 0.460 (0.836) C:72% T:90%	pCi/L	10/05/21 14:35	15262-20-1	
Sample: 2109187-11	Lab ID: 30441	480011 Collected: 09/08/21 14:00	Received:	09/16/21 10:10 M	latrix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 903.1	0.431 ± 0.448 (0.668) C:NA T:94%	pCi/L	10/06/21 14:38	13982-63-3	
	Pace Analytical	Services - Greensburg				
Radium-228	EPA 904.0	0.848 ± 0.441 (0.784) C:69% T:92%	pCi/L	10/05/21 14:35	15262-20-1	
Sample: 2109187-12 PWS:	Lab ID: 30441 Site ID:	480012 Collected: 09/08/21 08:27 Sample Type:	Received:	09/16/21 10:10 N	latrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical	Services - Greensburg				
Radium-226	EPA 903.1	0.184 ± 0.281 (0.451) C:NA T:98%	pCi/L	10/06/21 14:49	13982-63-3	
	Pace Analytical	Services - Greensburg				
		o o				

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALITY CONTROL - RADIOCHEMISTRY

Project: 2109187
Pace Project No.: 30441480

QC Batch: 465325 Analysis Method: EPA 903.1

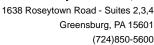
QC Batch Method: EPA 903.1 Analysis Description: 903.1 Radium-226

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 30441480001, 30441480002, 30441480003, 30441480004, 30441480005, 30441480006, 30441480007,

30441480008, 30441480009, 30441480010, 30441480011, 30441480012

METHOD BLANK: 2247040 Matrix: Water


Associated Lab Samples: 30441480001, 30441480002, 30441480003, 30441480004, 30441480005, 30441480006, 30441480007,

30441480008, 30441480009, 30441480010, 30441480011, 30441480012

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.0918 ± 0.285 (0.551) C:NA T:98%
 pCi/L
 10/06/21 13:53

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project: 2109187
Pace Project No.: 30441480

QC Batch: 465326 Analysis Method: EPA 904.0

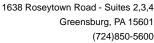
QC Batch Method: EPA 904.0 Analysis Description: 904.0 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 30441480001, 30441480002, 30441480003, 30441480004, 30441480005, 30441480006, 30441480007,

30441480008, 30441480009, 30441480010, 30441480011, 30441480012

METHOD BLANK: 2247041 Matrix: Water


Associated Lab Samples: 30441480001, 30441480002, 30441480003, 30441480004, 30441480005, 30441480006, 30441480007,

30441480008, 30441480009, 30441480010, 30441480011, 30441480012

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.533 ± 0.386 (0.749) C:67% T:86%
 pCi/L
 10/05/21 11:27

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 2109187 Pace Project No.: 30441480

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Act - Activity

Date: 10/07/2021 02:32 PM

Unc - Uncertainty: For Safe Drinking Water Act (SDWA) analyses, the reported Unc. Is the calculated Count Uncertainty (95% confidence interval) using a coverage factor of 1.96. For all other matrices (non-SDWA), the reported Unc. is the calculated Expanded Uncertainty (aka Combined Standard Uncertainty, CSU), reported at the 95% confidence interval using a coverage factor of 1.96.

Gamma Spec: The Unc. reported for all gamma-spectroscopy analyses (EPA 901.1), is the calculated Expanded Uncertainty (CSU) at the 95.4% confidence interval, using a coverage factor of 2.0.

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

WO#: 30441480

SUBCONTRACT ORDER

Sending Laboratory:

Released By

Micro-Methods Laboratory, Inc.

6500 Sunplex Drive Ocean Springs, MS 39564

Phone: 228.875.6420 Fax: 228.875.6423

Project Manager: Teresa Meins

Subcontracted Laboratory:

Pace Analytical-7

1638 Roseytown Rd. Suites 2, 3, 4

Greensburg, PA 15601

Phone: (724) 850-5600

Fax: -

Attn: Carin Ferris

Work Order: 2109187				
Analysis	Due	Expires	Comments	
Sample ID: 2109187-01 Water	Sampled: 09/0	8/2021 09:40	Sample Name:	MW-9
Radium, Total 226 & 228 by EPA 903.1 &	90 09/17/2021	10/06/2021 09:40		
Containers Supplied:				001
Sample ID: 2109187-02 <i>Water</i>	Sampled: 09/0	8/2021 11:41	Sample Name:	OW-2
Radium, Total 226 & 228 by EPA 903.1 &	90 09/17/2021	10/06/2021 11:41		
Containers Supplied:				002
Sample ID: 2109187-03 <i>Water</i>	Sampled: 09/0	8/2021 09:45	Sample Name:	MW-13
Radium, Total 226 & 228 by EPA 903.1 &	90 09/17/2021	10/06/2021 09:45		003
Containers Supplied:				60)
Sample ID: 2109187-04 <i>Water</i>	Sampled: 09/0	8/2021 11:00	Sample Name:	MW-7
Radium, Total 226 & 228 by EPA 903.1 &	90 09/17/2021	10/06/2021 11:00		004
Containers Supplied:				901
Sample ID: 2109187-05 <i>Water</i>	Sampled: 09/0	8/2021 12:05	Sample Name:	MW-14
Radium,Total 226 & 228 by EPA 903.1 &	90 09/17/2021	10/06/2021 12:05		605
Smah Jomeh	1/13/210/6	130	WS.	9/13/210 1630
Released By ✓	Date	Receiv	red By	Date
1/85		/		9/16/21 t030 JAC 9/2
Released By	Date	Receiv	ed By	Date
Released By	Date	Receiv	red By	Date
Released By	Date	Receiv	ed By	Date
Released By	Date	Receiv	ed By	Date

WO#:30441480

PM: CAF

Due Date: 09/23/21

CLIENT: MICROMETHOD

SUBCONTRACT ORDER (Continued)

Work Order: 2109187 (Continued)

Analysis	Due	Expires	Comments		*****
Containers Supplied:					
Sample ID: 2109187-06 <i>Water</i>	Sampled: 09/0	08/2021 12:35	Sample Name:	Field Blank	
Radium, Total 226 & 228 by EPA 903.1 8	90 09/17/2021	10/06/2021 12:35			80L
Containers Supplied:					000
Sample ID: 2109187-07 Water	Sampled: 09/0	08/2021 00:00	Sample Name:	Duplicate	
Radium, Total 226 & 228 by EPA 903.1 8	90 09/17/2021	10/06/2021 00:00			*****
Containers Supplied:				(507
Sample ID: 2109187-08 <i>Water</i>	Sampled: 09/0	08/2021 10:38	Sample Name:	MW-12	
Radium, Total 226 & 228 by EPA 903.1 &	90 09/17/2021	10/06/2021 10:38			6.2. F
Containers Supplied:					008
Sample ID: 2109187-09 <i>Water</i>	Sampled: 09/0	08/2021 12:50	Sample Name:	CCR-2	
Radium, Total 226 & 228 by EPA 903.1 &	90 09/17/2021	10/06/2021 12:50			
Containers Supplied:	• •				009
Sample ID: 2109187-10 <i>Water</i>	Sampled: 09/0	08/2021 08:38	Sample Name:	CCR-3	
Radium, Total 226 & 228 by EPA 903.1 &	90 09/17/2021	10/06/2021 08:38			010
Containers Supplied:					
Sample ID: 2109187-11 <i>Water</i>	Sampled: 09/0	08/2021 14:00	Sample Name:	CCR-4	
Radium, Total 226 & 228 by EPA 903.1 &	90 09/17/2021	10/06/2021 14:00		,	011
Containers Supplied:				,	<i>.</i>
Sample ID: 2109187-12 Water	Sampled: 09/0	08/2021 <u>08:27</u>	Sample Name:	CCR-5	Ö
Sman Jomeh	9/13/210	1630	UDS	9/13	3/210/430
Released By	Date	Receiv	ed By	<i>'</i>	Date Date
<u> </u>			July Lk	At "	9/16/21 1010
Released By	Date	Recejv	ed By		Date
Released By	Date	Receiv	ed By	*************************************	Date
Released By	Date	Receiv	ed By	***************************************	Date
Released By	Date	Receiv	ed By		Date

SUBCONTRACT ORDER (Continued)

Work Order: 2109187 (Continued)

Analysis		Due	Expires	Comments	
Sample ID: 2109187-12 Wa	ter :	Sampled: 09/	08/2021 08:27	Sample Name: CCR-5	
Radium, Total 226 & 228 by EPA 903	1 & 90	09/17/2021	10/06/2021 08:27		
Containers Supplied:					012

WO#:30441480

PM: CAF

Due Date: 09/23/21

CLIENT: MICROMETHOD

Smah Jonneh	9/13/210 1030	WS 9/13/2	10/430
Released By	Date	Received By	Date
<u></u>		In Lity 9/11/21	1010
Released By	Date	Received By	Date
Released By	Date	Received By	Date
Released By	Date	Received By	Date
Released By	Date	Received By	

Pittsburgh Lal	b Sample Condit	ion (Jpor	n Re	eceipt	
Face Analytical	Client Name:	M	icre	N	Nethods	Project #
Courier: Fed Ex	, UPS □USPS □ Client		Comme	ercial	Pace Other	Label JAC-
Tracking #: 17 353	063 03 6663	01	77			LIMS Login M
Custody Seal on Cooler/	Box Present: yes	e r	10	Seals	s intact: 🔲 yes 🖺	
Thermometer Used			of Ice:	Wet	Blue None	
Cooler Temperature	Observed Temp		٠c	Corre	ection Factor:	°C Final Temp: °C
Temp should be above freezi	ng to 6°C					
					pH paper Lot#	Date and Initials of person examining contents: \(\frac{\fir}{\frac{\fir\fir\f{\frac{\fir\f{\f{\frac{\fir\f{\frac{\frac
Comments:		Yes	No	N/A	1000411	
Chain of Custody Present:		<u> </u>			1.	
Chain of Custody Filled Ou	ut:		/		2. NO Preser	vertice listed
Chain of Custody Relinqui	shed:	/			3.	
Sampler Name & Signatur	e on COC:	<u></u>	1		4. NO name	or signature
Sample Labels match CO					 5 .	9
-Includes date/time/ID	Matrix:	71 '	·			
Samples Arrived within Ho	ld Time:	/			6.	
Short Hold Time Analysis	s (<72hr remaining):		~		7.	
Rush Turn Around Time	Requested:		'		8,	
Sufficient Volume:	JAGTHOP		1		9. MW-9 at Fi	tld blank - 1 bottle of each with no lids/dry.
Correct Containers Used:		/			10. Shipped	with no lids/dry.
-Pace Containers Used	:					
Containers Intact:			\		11. MW-9 + Field	ablank - I bottle of each
Orthophosphate field filtere	ed				1	pped with no lids /dry.
Hex Cr Aqueous sample fi	eld filtered			<u> </u>	13.	
Organic Samples check	ed for dechlorination:				14.	
Filtered volume received for	or Dissolved tests			/	15.	
All containers have been chec	ked for preservation.	V			16.	
exceptions: VOA, coliform Non-aqueous matrix		Radon	,			
All containers meet method requirements.	d preservation				Initial when JAG-	Date/time of
тецинетенкя.					Lot # of added	preservation
Headspace in VOA Vials (>6mm):			V	17,	
Trip Blank Present:				/	18.	
Trip Blank Custody Seals F	Present			/		
Rad Samples Screened <				Carlet a series and their	Initial when completed: JAG	Date: 9/20/21 Survey Meter SN: 1563
Client Notification/ Resolu	ution:	t	1			
Person Contacted:				Date/	Time:	Contacted By:
Comments/ Resolution:						

 $\ \square$ A check in this box indicates that additional information has been stored in ereports.

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

CLIENT: MICROMETHOD

APPENDIX C

FIELD SAMPLING DATA

Monitor Well:	CCR	-2		Well Diameter:	4	inches
Date:	3/15/21		- ,;	Water Column Height:	36.5	ft
Sampling Method	ı:	Pumped		(Measured Well Depth - Static Wa		٦"
Measured Well De		84.5	ft	TOC Elevation ⁽¹⁾ :	542.50	ft
Static Water Level (Depth to Water)	l:	43	ft	GW Elevation: (TOC Elevation - Static Water Lev	494.5 /el)	ft
Maximum Drawdo (10% of WCH + SWL)	own Depth	51.65	_ft	Well Volume: (Water Column Height x Well Cas	23.72 ing Volume Fac	

Date	Volume Purged (L)	Time	Elapsed Time (min)	Water Level (ft)	Turbidity (NTU)	Temp (C)	рН	Conductivity (uS/cm)
3/15/21		17:50		The state of		HEMSHIP		
***************************************	12	17:53			0.53	19.3	7.52	S. 505
	i	17:56			0.09	18.5	7.51	194.3
	l l	17.59			0.01	18.4	7.36	195,1
	36	18:05			0.32	18.6	7.38	197.2
								1

Sample Time: Sample Analyzed for:	Appendix III (Boron, Calcium, Chloride, Fluoride, Sulfate, & TDS). pH measured in the field. Appendix IV (Arsenic,	
	Barium, Beryllium, Cadmium, Chromium, Cobalt, Fluoride, Lead, Lithium, Molyodenum, Selenium, & Radium 226/228).	
Total Drawdown (ft):	1.15 (SWL - Final Depth)	
Drawdown/Water Column (%):	(Total Drawdown / WCH)	
Sampler Signature:	Finel Depth = 49.15 ft	

If possible, total drawdown will not exceed 0.33 ft.

If drawdown exceeds 10% of water column height, flow will be stopped and well allowed to recover.

Well	Stabilization		Well Casing	Volumes (gal/ft)	
pH:	0.1 standard units	1" = 0.041	1 1/2 " = 0.10	2" = 0.16	2 1/2" = 0.24
onductivity:	within 3%	3" = 0.37	3 1/2" = 0.50	4" = 0.65	6" = 1.46
emperature:	0.1 deg. C	8" = 2.61	10" = 4.08	12" = 5.87	
turbidity:	<5 NTU or 10%	-			

Monitor Well:	CCR-3	Well Diameter:	4	_ inche
Date:	3/15/21		20.5	
Sampling Method:	Pumped	Water Column Height: (Measured Well Depth - Static Wa	2 8. 5 ater Level)	ft
Measured Well De		ft TOC Elevation ⁽¹⁾ :	504.78	ft
Static Water Level: (Depth to Water)	-	ft GW Elevation: (TOC Elevation - Static Water Lev	479.93	ft
Maximum Drawdov (10% of WCH + SWL)	wn Depth 27.46	_ft	18.29 ing Volume Fac	_gal ctor)

Start Pump

Date	Volume Purged (L)	Time	Elapsed Time (min)	Water Level (ft)	Turbidity (NTU)	Temp (C)	рН	Conductivity (uS/cm)
3/15/21	WHEE !	18:30					HHIIS	
	1.0 L	18:23			197	19.3	58.8	597.9 615.4 615.9
		18:36			0.68	19.0	6.84	65.4
	1	18:29			6.22	18.8	6.75	615.
	4,56	18:37			0.42	18.7	6,81	617.7
							-	
							+	-
							-	
							-	
							-	
							-	
							1	
								1
							+	
							+	
							+	
							+	
							1	
							1	
				34				

Sample	Time:
Sample	Analyzed for:

18:35

Appendix III (Boron, Calcium, Chloride, Fluoride, Sulfate, & TDS). pH measured in the field. Appendix IV (Arsenic,

Barium, Beryllium, Cadmium, Chromium, Cobalt, Fluoride, Lead, Lithium, Molybdenum, Selenium, & Radium 226/228).

(SWL - Final Depth)

Total Drawdown (ft):
Drawdown/Water Column (%):

3.90%

____(Total Drawdown / WCH)

Sampler Signature:

Final Depth 25.95

If possible, total drawdown will not exceed 0.33 ft.

If drawdown exceeds 10% of water column height, flow will be stopped and well allowed to recover.

Well Stabilization				
pH:	0.1 standard units			
conductivity:	within 3%			
temperature:	0.1 deg. C			
turbidity:	<5 NTU or 10%			

Well Casing Volumes (gal/ft)					
1" = 0.041	1 1/2 " = 0.10	2" = 0.16	2 1/2" = 0.24		
3" = 0.37	3 1/2" = 0.50	4" = 0.65	6" = 1.46		
8" = 2.61	10" = 4.08	12" = 5.87			

#REF!

Monitor Well:	CCR-4	Well Diameter:	4	inches
Date:	3/16/21	Water Column Height:	28.1	ft
Sampling Method:	Pumped	(Measured Well Depth - Static Wa	ter Level)	~
Measured Well Dept	th: 53	TOC Elevation ⁽¹⁾ :	505.68	ft
Static Water Level: (Depth to Water)	24.9	GW Elevation: (TOC Elevation - Static Water Lev	48 9.7 8	_ft
Maximum Drawdow	n Depth 27.11	Well Volume:	19.77	gal

(10% of WCH + SWL)

(Water Column Height x Well Casing Volume Factor)

Start Pump

Date	Volume Purged (L)	Time	Elapsed Time (min)	Water Level (ft)	Turbidity (NTU)	Temp (C)	рН	Conductivity (uS/cm)
3/16/21	DE SA	10:30	Em & Est	el testina				
	6	10.34			5.33	18 7	6.36	345.6 345.1
		10:36			3.15	18.3	6.34	345.1
		10.38			2.89	18.3	6.33	345.8 343.1
	46	10:38			3,42	18.4	c.32	343.1

Sample	Time:
Sample	Analyzed for:

10:43

Appendix III (Boron, Calcium, Chloride, Fluoride, Sulfate, & TDS). pH measured in the field. Appendix IV (Arsenic, Sample Analyzed for:

Barium, Beryllium, Cadmium, Chromium, Cobalt, Fluoride, Lead, Lithium, Molybdenum, Selenium, & Radium 226/228).

Total Drawdown (ft): Drawdown/Water Column (%):

___(SWL - Final Depth) ___(Total Drawdown / WCH)

Sampler Signature:

Final Depth= 26 Ft

If possible, total drawdown will not exceed 0.33 ft.

If drawdown exceeds 10% of water column height, flow will be stopped and well allowed to recover.

Well Stabilization				
pH:	0.1 standard units			
conductivity:	within 3%			
temperature:	0.1 deg. C			
turbidity:	<5 NTU or 10%			

	Well Casing	Volumes (gal/ft)	
1" = 0.041	1 1/2 " = 0.10	2" = 0.16	2 1/2" = 0.24
3" = 0.37	3 1/2" = 0.50	4" = 0.65	6" = 1.46
8" = 2.61	10" = 4.08	12" = 5.87	

Monitor Well:	CCR-5	Well Diameter:	4	inches
Date: 3/	16/21	Water Column Height:	27.19	ft
Sampling Method:	Pumped	(Measured Well Depth - Static W	/ater Level)	-
Measured Well Depth:	34.55 ft	TOC Elevation ⁽¹⁾ :	470.46	ft
Static Water Level: (Depth to Water)	7.36 ft	GW Elevation: (TOC Elevation - Static Water Le	463.1 evel)	ft
Maximum Drawdown Depth (10% of WCH + SWL)	10.08 ft	Well Volume: (Water Column Height x Well Ca	17,67 asing Volume Fac	_gal ctor)

Start	Pump

Volume Purged (L)	Time	Elapsed Time (min)	Water Level (ft)	Turbidity (NTU)	Temp (C)	рН	Conductivity (uS/cm)
12 (2)	9:20	5 423 16	- 12 CT		EXCELLEGIAL STATE OF THE PARTY.	RECEI	1182 1
11	9:26				18	6.14	1528
	9:29			312	17.9	6.13	1534
	9:32			373	18		1534
1	9:35			495	18	6.14	1235
54	9.38			553	18.1	6.17	1532
						†	
						1	
						_	
		· · · · · · · · · · · · · · · · · · ·				+	
						-	
	Volume Purged (L)	Purged (L) 9:20 1 4:26 1 9:21 9:32 9:35	Purged Time (min) 9:20 1	Purged (L) Time (min) Level (ft) 9:20 1 9:21 9:32 9:35 5 4:31	Purged (L) Time (min) Level (ft) Turbidity (NTU) 9:20 11 9:21 9:32 9:35 9:35 9:35 553	Purged (L) Time (min) Level (ft) Turbidity (C) 9:20 1	Purged (L) Time (min) Level (ft) Turbidity (NTU) (C) PH (C

Sample	Time:	
Sample	Analyzed for:	

7.40

Appendix III (Boron, Calcium, Chloride, Fluoride, Sulfate, & TDS). pH measured in the field. Appendix IV (Arsenic,

Barium, Beryllium, Cadmium, Chromium, Cobalt, Fluoride, Lead, Lithium, Molybdenum, Selenium, & Radium 226/228).

Total Drawdown (ft): Drawdown/Water Column (%):

1.62%

_(SWL - Final Depth) _(Total Drawdown / WCH)

Sampler Signature:

If possible, total drawdown will not exceed 0.33 ft.

Final Depth = 7.8ft

If drawdown exceeds 10% of water column height, flow will be stopped and well allowed to recover.

Well Stabilization					
pH: ,	0.1 standard units				
conductivity:	within 3%				
temperature: 0.1 deg. C					
turbidity:	<5 NTU or 10%				

	Well Casing	Volumes (gal/ft)	
1" = 0.041	1 1/2 " = 0.10	2" = 0.16	2 1/2" = 0.24
3" = 0.37	3 1/2" = 0.50	4" = 0.65	6" = 1.46
8" = 2.61	10" = 4.08	12" = 5.87	

#REF!

PH, Conductivity, & Temp were all in line there was color to samples not allowing Furbidity to line up.

Monitor Well:	MW-	7	Well Diameter:	4inches
Date:	3/16/21		Water Column Height	22.77 ft
Sampling Method:	:	Pumped	(Measured Well Depth - Stati	: Water Level)
Measured Well De		56.92 ft	TOC Elevation ⁽¹⁾ :	571.76ft
Static Water Level (Depth to Water)		34.15 ft	GW Elevation: (TOC Elevation - Static Wate	14.00
Maximum Drawdo (10% of WCH + SWL)	own Depth	36.43 ft	Well Volume: (Water Column Height x Well	Casing Volume Factor)

_	_
Start	Pump

Date	Purged (L)	Time	Time (min)	Level (ft)	Turbidity (NTU)	Temp (C)	рН	Conductivity (uS/cm)
3/16/21		13.70	12 (1) (200)		The state of			
197	14	13:27			2.59	21.0	6.57	266.2
	1	13:30			1.95	195	6.62	253.6
		13133			1.79	19.5	631	253.6
	96	13:36			90	19.5	6.42	286.6
					2,02	19.4	6.34	249.2
	1							
	1							
	1							
	1							
	1						1	
	1							
	+					1	1	
	-					+	+	
							+	
	-						+	
							+	
	1						-	-

^		Time	
Sam	nie.	I ime	٠.

13:40

Sample Analyzed for:

Appendix III (Boron, Calcium, Chloride, Fluoride, Sulfate, & TDS). pH measured in the field. Appendix IV (Arsenic,

Barium, Beryllium, Cadmium, Chromium, Cobalt, Fluoride, Lead, Lithium, Molybdenum, Selenium, & Radium 226/228).

Total Drawdown (ft):

Drawdown/Water Column (%):

0.6 ft 2.63%

(SWL - Final Depth)

7

(Total Drawdown / WCH)

Sampler Signature.

Final Depth = 34.75 A

If possible, total drawdown will not exceed 0.33 ft.

Field Blank Collected Here 13:33

Well Stabilization					
pH:	0.1 standard units				
conductivity:	within 3%				
temperature:	0.1 deg. C				
turbidity:	<5 NTU or 10%				

Well Casing Volumes (gal/ft)						
1" = 0.041	1 1/2 " = 0.10	2" = 0.16	2 1/2" = 0.24			
3" = 0.37	3 1/2" = 0.50	4" = 0.65	6" = 1.46			
8" = 2.61	10" = 4.08	12" = 5.87				

Monitor Well:	MW-	9			Well Diame	ter:	4	inches	
Date:	3/15/2	(Water Colu	mn Height:	13.24	ft	
Sampling Method: Measured Well De Static Water Level (Depth to Water) Maximum Drawdo (10% of WCH + SWL)	pth:	21.74 8.5 9.82	ft ft		(Measured Wei TOC Elevation GW Elevation (TOC Elevation Well Volum	ll Depth - Static Wa ion ⁽¹⁾ : on: ₁ - Static Water Lev	480.04 471.54 el)	ft ft gal	,
	Date	Volume Purged (L)	Time	Elapsed Time (min)	Water Level (ft)	Turbidity (NTU)	Temp (C)	рН	Conductivity (uS/cm)
Start Pump	3/15/21	(=)	17:10	HALE DIS					
Start Fullip	5/15/21	24	17:15			0.12	18.6	4.99	1686
			17:18		1			4,84	1712
	-	-				0.64	17.9		1704
		11.000	17:21			1.11	17.7	4.79	
		45L	17:24			10.6	17.5	4.78	1703
		-							
		-			-				
		-			-			-	
					-			-	
		1							
		-							
Committee Times		17.	26						
Sample Time:	fau.			Oblanida Fluedida	Cultate 0 TDC). pH measured in t	he field Asses	div IV (Amoni	^
Sample Analyzed	ior.	Appendix III (E	ium Codmium I	Chromium Cobal	t Eluorida Laad	, Lithium, Molybden	um Selenium	& Radium 22	3/228)
T-4-1 D-10-1-11-11-11-11-11-11-11-11-11-11-11-1	64).	banum, beryii		suff				Q TQUIGITI ZZ	uizzo).
Total Drawdown (1	rt):					(SWL - Final Depth	,		
Drawdown/Water	Column (%):			3414		(Total Drawdown / '	WCH)		
Sampler Signature:	C- C	2LL	_		Final	Depth:	9.3	4 ft	
If possible, total drawd If drawdown exceeds 10			stopped and we	Il allowed to reco	ver.				1
		-							
Well Stabilization	0.4 -14. 1. "		Well Casing Vo	olumes (gal/ft)	4 4/2 " - 0 40		2" - 0.16		2 1/2" = 0.24
pH:	0.1 standard units		1" = 0.041 3" = 0.37		1 1/2 " = 0.10 3 1/2" = 0.50		2" = 0.16 4" = 0.65		2 1/2 = 0.24 6" = 1.46
conductivity:	within 3% 0.1 deg. C		8" = 2.61		10" = 4.08		12" = 5.87		
temperature:	<5 NTU or 10%		0 - 2.01		10 - 4.00		.2 0.01		

Monitor Well:	or Well: MW-12		Well Diameter:	4	inche
Date: 3/15/21		_	Water Column Height:	14.09	_ft
Sampling Method:	Pumped		(Measured Well Depth - Static Wa	iter Level)	33
Measured Well Dep	th: 19.09	— _{ft}	TOC Elevation ⁽¹⁾ :	474.19	ft
Static Water Level: (Depth to Water)		ft	GW Elevation: (TOC Elevation - Static Water Lev	469.14 rel)	_ft
Maximum Drawdov (10% of WCH + SWL)	vn Depth 6.41	— ^{ft}	Well Volume: (Water Column Height x Well Cas	9.15 ing Volume Fac	gal ctor)

Start Pump

Date	Volume Purged (L)	Time	Elapsed Time (min)	Water Level (ft)	Turbidity (NTU)	Temp (C)	pН	Conductivity (uS/cm)
3/15/21	BERTHA	15:45	REAL PROPERTY.		PROFESSION OF THE PROPERTY OF			
8	1.0 L	15:50			32.5	16.5	6.76	495.4
		15 153			41.6	15.9	6.76	493.6
		15:56			45.7	16.0	6.68	494.5
		15:59			27.0	15.8	6.64	492.9
		16:02			9.58	15.8	6.64	493.2
		16:05			14.42	15.48	6.55	1186
		16:08			27.8	16.0	6.67	488.9
		16:11			33.6	16.0	6.56	4915
	5.0L	16:14			28.8	15.9	6.53	490.1
						-		
							-	
						ļ		
							1	

Sample Time: Sample Analyzed for:	Appendix III (Boron, Calcium, Chlo	ride, Fluoride, Sulfate, & T	DS). pH measured in th	ne field. Append	lix IV (Arsen	iic,
	Barium, Beryllium, Cadmium, Chro	omium, Cobalt, Fluoride, Le	ad, Lithium, Molybdeni	um, Selenium, 8	k Radium 22	?6/228).
Total Drawdown (ft):	1.5		(SWL - Final Depth))		
Drawdown/Water Column (%):	10.7		(Total Drawdown / \	WCH)		
C CLE						
Sampler Signature:	Fina	1 Death=	6.5 F+			

2 1/2" = 0.24 6" = 1.46

If possible, total drawdown will not exceed 0.33 ft.

Well Stabilization			Well Casing	Well Casing Volumes (gal/ft)		
pH:	0.1 standard units	1" = 0.041	1 1/2 " = 0.10	2" = 0.16		
conductivity:	within 3%	3" = 0.37	3 1/2" = 0.50	4" = 0.65		
temperature:	0.1 deg. C	8" = 2.61	10" = 4.08	12" = 5.87		
turbidity:	<5 NTU or 10%	31.				

Monitor Well:	itor Well: MW-13 Well Diameter:		44	inches	
Date:	3/16/21		- Water Column Height:	47.2	_ft
Sampling Method	:	Pumped	(Measured Well Depth - Static Wa	iter Level)	
Measured Well De	epth:	106	ft TOC Elevation ⁽¹⁾ :	584.48	_ft
Static Water Leve	l:	58.8	ft GW Elevation:	525.68	ft
(Depth to Water)		(2 62	ft GW Elevation: (TOC Elevation - Static Water Lev ft Well Volume:	el) 30 (0	
Maximum Drawdo (10% of WCH + SWL)	own Depth	63.5 ¹	ft Well Volume: (Water Column Height x Well Cas		

Start	Pump

Date	Volume Purged (L)	Time	Elapsed Time (min)	Water Level (ft)	Turbidity (NTU)	Temp (C)	рН	Conductivity (uS/cm)
3/16/21		11:50					Faugus.	
	IL	11:28			3.17	22.0	678	218.8
		11:32			2.10	21.2	689	220.8
		11:36			1.50	21.5	6.83	552.3
		11:40			1.70	21.5	6.10	4.922
		11.44			0.68	20.9	6.90	225.7
	1	11.48			0.68	21.0	6.80	227.4
	3.5	11:52			0.54	21.0	6.73	225.7
					ļ			
							-	
						-		
						-		
							-	
	-						-	
	1							
					-	-		-
						_		
					-	-		
						-	-	
	-				-	-	-	
	-				-		-	-
	-					-		
	-							-
	1							

Sample	Time:
Sample	Analyzed for

11:56

Appendix III (Boron, Calcium, Chloride, Fluoride, Sulfate, & TDS). pH measured in the field. Appendix IV (Antimony, Arsenic,

Barium, Beryllium, Cadmium, Chromium, Cobalt, Fluoride, Lead, Lithium, Molybdenum, Selenium, & Radium 226/228).

Total Drawdown (ft):

Drawdown/Water Column (%):

0.65

(SWL - Final Depth)

1.38%

(Total Drawdown / WCH)

Sampler Signature:

Final Depth = 59.45 St

If possible, total drawdown will not exceed 0.33 ft.

Well Stabilization				
pH:	0.1 standard units			
conductivity:	within 3%			
temperature:	0.1 deg. C			
turbidity:	<5 NTU or 10%			

	Well Casing	Volumes (gal/ft)	
1" = 0.041	1 1/2 " = 0.10	2" = 0.16	2 1/2" = 0.24
3" = 0.37	3 1/2" = 0.50	4" = 0.65	6" = 1.46
8" = 2.61	10" = 4.08	12" = 5.87	

Monitor Well:	MW-14	Well Diameter:	44	inches
Date:	3/16/21	Water Column Height:	32. 6 5	ft
Sampling Method:	Pumped	(Measured Well Depth - Static Wa		,
Measured Well De	pth: 60.97	ft TOC Elevation ⁽¹⁾ :	593.84	ft
Static Water Level (Depth to Water)	-	ft GW Elevation: (TOC Elevation - Static Water Lev	565.52	
Maximum Drawdor (10% of WCH + SWL)	wn Depth 31.58	ft Well Volume: (Water Column Height x Well Casi	21.22 ng Volume Fac	. •

Start	Pu	am

Date	Volume Purged (L)	Time	Elapsed Time (min)	Water Level (ft)	Turbidity (NTU)	Temp (C)	рН	Conductivity (uS/cm)
3/16/21		74:08	15-51-52	7 17 6				UI JANESSEE
	16	14:11			0.31	21.6	5.19	8,551
	1	14:13			0,62	20.7	5.05	117.8
	1	14.15			0.59	20.6	4.98	117.9
	46	14:17			0:57	20.7	4.96	119.4
							-	
							-	
	-					-	_	
							-	
						-		
							-	
	 							
-								

Sample	Time:	
Sample	Analyzed	for:

14:20
Appendix III (Boron, Calcium, Chloride, Fluoride, Sulfate, & TDS). pH measured in the field. Appendix IV (Arsenic,

Final Depth = 29.4ft

Barium, Beryllium, Cadmium, Chromium, Cobalt, Fluoride, Lead, Lithium, Molybdenum, Selenium, & Radium 226/228).

Total Drawdown (ft): Drawdown/Water Column (%):

3.3/%

(SWL - Final Depth) (Total Drawdown / WCH)

Sampler Signature:

If possible, total drawdown will not exceed 0.33 ft.

If drawdown exceeds 10% of water column height, flow will be stopped and well allowed to recover.

Well Stabilization					
pH:	0.1 standard units				
conductivity:	within 3%				
temperature:	0.1 deg. C				
turbidity:	<5 NTU or 10%				

Well Casing Volumes (gal/ft)					
1" = 0.041	1 1/2 " = 0.10	2" = 0.16	2 1/2" = 0.24		
3" = 0.37	3 1/2" = 0.50	4" = 0.65	6" = 1.46		
8" = 2.61	10" = 4.08	12" = 5.87			

Duplicate taken here.

Monitor Well: OW-2		- 5	Well Diameter:	44	inche	
Date:	3/15/21					
				Water Column Height:	16.7	ft
Sampling Method	d:	Pumped		(Measured Well Depth - Static W	ater Level)	-
Measured Well D		27.05	ft	TOC Elevation ⁽¹⁾ :	489.40	_ft
Static Water Leve	el:	10.35	ft	GW Elevation:	479.05	ft
(Depth to Water)			-	(TOC Elevation - Static Water Le	vel)	
Maximum Drawd	•	12.02	_ft	Well Volume: (Water Column Height x Well Ca	-	_gal

011	D
Start	Pump

Date	Volume Purged (L)	Time	Elapsed Time (min)	Water Level (ft)	Turbidity (NTU)	Temp (C)	рН	Conductivity (uS/cm)
3/15/21	SE PROPERTY.	16:37		Manes.				F22
	iL	16:40			1.43	18.5	6.68	477.5
	1	16:43			0.74	17.9	6.67	470.7
	- (16:46			0.29	17.9	6.70	471.7
	3.56	16:49			0.42	17.8	6.71	472.0
	-							

Sample Time:	16:51	_						
Sample Analyzed for:	Appendix III (Boron, Calcium, Chloride, Fluoride, Sulfate, & TDS). pH measured in the field. Appendix IV (Arsenic,							
	Barium, Beryllium, Cadmium, Chromium, Co	balt, Fluoride, Lead, Lithium, Molybdenum, Selenium, & Radium 226/228).						
Total Drawdown (ft):	6.95F+	(SWL - Final Depth)						
Drawdown/Water Column (%):	5.68	(Total Drawdown / WCH)						
C 21 /.	-							

Sampler Signature:

Final Depth = 11.3 ft

If possible, total drawdown will not exceed 0.33 ft.

Well	Stabilization
pH:	0.1 standard units
conductivity:	within 3%
temperature:	0.1 deg. C
turbidity:	<5 NTU or 10%

	Well Casing	Volumes (gal/ft)	
1" = 0.041	1 1/2 " = 0.10	2" = 0.16	2 1/2" = 0.24
3" = 0.37	3 1/2" = 0.50	4" = 0.65	6" = 1.46
8" = 2.61	10" = 4.08	12" = 5.87	

CCR-2 Monitor Well: 5/26/2021 Date:

Water Column Height:

inches

Final Deshi 49.4ft

Sampling Method:

Pumped

(Measured Well Depth - Static Water Level)

Measured Well Depth: Static Water Level:

TOC Elevation: GW Elevation:

(Depth to Water) **Maximum Drawdown Depth**

(TOC Elevation - Static Water I

Well Volume:

Well Diameter:

(10% of WCH + SWL)

(Water Column Height x Well Casing

Start Pump

Date	Volume Purged (L)	Time	Elapsed Time (min)	Water Level (ft)	Turbidity (NTU)	Temp (C)	рН	Conductivity (uS/cm)
5/26/2021		11.41				ALC: UNKNOWN		The state of the
7-7	2.25	1150			0.25	22.5	7.16	205.6
		11:53			0.34	20.8	7.27	186.1
		11:56			0.30	19.9	7.23	185.3
		11:59			0.25	19.6	237	182.3
	4,75	12:02			0.23	19.6	7.21	1835
							-	
	-							
	_					ļ	-	
	-	-				.	-	
							-	
	-					 		
						 		
						-	-	

Sample Time:

12:05

Sample Analyzed for:

Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Cobalt, Fluoride, Lead, Lithium, Mercury, Molybdenum, Selenium,

Thallium, Radium 226/228

Total Drawdown (ft):

Drawdown/Water Column 1%):

Sampler Signature:

If possible, total drawdown will not exceed 0.33 ft.

itabilization
0.1 standard units
within 3%
0.1 deg. C
<5 NTU or 10%

	Well Casing	Volumes (gal/ft)	
1" = 0.041	1 1/2 " = 0.10	2" = 0.16	2 1/2" = 0.24
3" = 0.37	3 1/2" = 0.50	4" = 0.65	6" = 1.46
8" = 2.61	10" = 4.08	12" = 5.87	

Monitor Well:	CCR-3	Well Diameter:	4inche
Date: 5/26/	1021	Water Column Height: (Measured Well Depth - Static)	27.5 ft
Sampling Method: Measured Well Depth:	Pumped 53 ft	TOC Elevation:	504.78 ft
Static Water Level:	25.5 ft	GW Elevation: (TOC Elevation - Static Water I	479.28st
(Depth to Water) Maximum Drawdown Depth	18.25 tt	Well Volume:	11.88 gal
(10% of WCH + SWL)		(Water Column Height x Well C	Casing Volume Factor)

Start	Pump

Date	Volume Purged (L)	Time	Elapsed Time (min)	Water Level (ft)	Turbidity (NTU)	Temp (C)	рН	Conductivity (uS/cm)
5/26/2021		11:08	Nation 1	ra Maria	Billian III			
-1 1	2.0	11:08			1.98	20.4	6.57	596.8 592.3
	1	11:11			1.78	20.0	6.57	592.3
	3.15	11:14			1.4	19.8	6.57	588 1
					/			

Sample	Time:	
Sample	Analyzed for:	

Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Cobalt, Fluoride, Lead, Lithium, Mercury, Molybdenum, Selenium, Thallium, Radium 226/228

Total Drawdown (ft):

Drawdown/Water Column (%):

Sampler Signature:

FINAL Depth: 26.8/ ft

If possible, total drawdown will not exceed 0.33 ft.

Well Stabilization					
pH:	0.1 standard units				
conductivity:	within 3%				
temperature:	0.1 deg. C				
turbidity:	<5 NTU or 10%				

Well Casing Volumes (gal/ft)						
1" = 0.041	1 1/2 " = 0.10	2" = 0.16	2 1/2" = 0.24			
3" = 0.37	3 1/2" = 0.50	4" = 0.65	6" = 1.46			
8" = 2.61	10" = 4.08	12" = 5.87				

Monitor Well:	CCR-4			Well Diameter:	4	inches
Date:	5/26/2	21	,	Water Column Height:	27.9	_ft
Sampling Method:	00	Pumped		(Measured Well Depth - Static Wat	er Level)	
Measured Well Dep	th:	53	ft	TOC Elevation:	505.68	ft
Static Water Level: (Depth to Water) Maximum Drawdow (10% of WCH + SWL)	•	25.1 27.89	ft	GW Elevation: (TOC Elevation - Static Water Leve Well Volume: (Water Column Height x Well Casi	18 135	- _gal

Date	Volume Purged (L)	Time	Elapsed Time (min)	Water Level (ft)	Turbidity (NTU)	Temp (C)	рН	Conductivity (uS/cm)
5/26/21		8:08						
	2.0	8:13 8:16 8:19			55.0 43.8	19.6	7.21	335.0
		8.16			43.8	19.1	7.29	3/4.2
		8:19			39.2	18 8	7.14	311.9
	3.5	8:22			37.0	18.8	7.17	311.2
		-						
		5						

Sample Time: Sample Analyzed f	or:	Antimony, Arse	enic, Barium, Be	eryllium, Cadmi	ım, Chromium	ı, Cobalt, Fluc	oride, Lead,	Lithium, Mercu	ıry, Molybde	num, Selenium,
Total Drawdown (fi	t):	- 72	1.1	£						
Drawdown/Water C	olumn (%):		3.5	898						
Sampler Signature			Fin	al D	epth	26.1	ff			

If possible, total drawdown will not exceed 0.33 ft.

Well	Stabilization		Well Casing	Volumes (gal/ft)
pH:	0.1 standard units	1" = 0.041	1 1/2 " = 0.10	2" = 0.16
conductivity:	within 3%	3" = 0.37	3 1/2" = 0.50	4" = 0.65
temperature:	0.1 deg. C	8" = 2.61	10" = 4.08	12" = 5.87
turbidity:	<5 NTU or 10%			

Monitor Well:	CCR-5	Well Diameter:	4inches
Date:	5-26-21	Water Column Height:	26.84n
Sampling Method:	Pumped	(Measured Well Depth - Static W	/ater Level)
Measured Well Dep	oth: 34.55	ft TOC Elevation:	470.46ft
Static Water Level: (Depth to Water)		ft GW Elevation: (TOC Elevation - Static Water Le	462.7.5
Maximum Drawdov (10% of WCH + SWL)	vn Depth <u> </u>	ft Well Volume: (Water Column Height x Well Ca	gal

Start	Pump	

Date	Volume Purged (L)	Time	Elapsed Time (min)	Water Level (ft)	Turbidity (NTU)	Temp (C)	рН	Conductivity (uS/cm)
5-26-21	MEKER	7 58						
	9.0	8.30		8.69	252	19.5	6.60	1/30
		8:54			247	18.8	6.66	1111
	10.00	8.38	1111	6 811	244	18.8	6.68	1103
	12.5	8:42	44	894	245	18 7	6.64	1109
				-				
							-	

Sample	Time:	
Sample	Analyzed for:	

Sampler Signature:

08:45

Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Cobalt, Fluoride, Lead, Lithium, Mercury, Molybdenum, Selenium,

Thallium, Radium 226/228

Total Drawdown (ft):

4587

* Lots of iron or orange tint in collectel ground with

If possible, total drawdown will not exceed 0.33 ft.

Well Stabilization				
pH:	0.1 standard units			
conductivity:	within 3%			
temperature:	0.1 deg. C			
turbidity:	<5 NTU or 10%			

	Well Casing	Volumes (gal/ft)	
1" = 0.041	1 1/2 " = 0.10	2" = 0.16	2 1/2" = 0.24
3" = 0.37	3 1/2" = 0.50	4" = 0.65	6" = 1.46
8" = 2.61	10" = 4.08	12" = 5.87	

Monitor Well:	MW-	7			Well Diame	eter:	4	inches
Date:	5-26-2					ı mn Height: ıll Depth - Static W	22,20	ft
Sampling Method:		Pumped			(Ivieasured vve	iii Deptii - Static vv	ater Level)	
Measured Well Dept	th:	56.92 f	t		TOC Elevat	tion:	571.76	_ft
Static Water Level: (Depth to Water)		34.20			•	n - Static Water Le	111 -1	
Maximum Drawdow (10% of WCH + SWL)	n Depth	<u>36.42</u> f	t		Well Volum (Water Column	ne: n Height x Well Ca		gal ctor)
Г		Volume		Elapsed	Water			

Date	Volume Purged (L)	Time	Elapsed Time (min)	Water Level (ft)	Turbidity (NTU)	Temp (C)	рН	Conductivity (uS/cm)
5-26-21	Alleria :	1131	TALERIES		A		100000	
	7.5	1150		35,72	08.0	19.6	664	273,7 273,5 271.2
	11	1158	27	3610	0.66	19.6	6.60	273.5
	11,5	11 > 8		2610	0.00	17.6	1000	2 11.5
							-	
							-	
	17) QC)					

Sample Time: Sample Analyzed for:	Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Cobalt, Fluoride, Lead, Lithium, Mercury, Molybdenum, Selenium,
3	Thallium, Radium 226/228
Total Drawdown (ft):	1,9
Drawdown/Water Column (%):	8.55 /

Sampler Signature:

If possible, total drawdown will not exceed 0.33 ft.

Well	Stabilization
pH:	0.1 standard units
conductivity:	within 3%
temperature:	0.1 deg. C
turbidity:	<5 NTU or 10%

Well Casing Volumes (gal/ft)						
1" = 0.041	1 1/2 " = 0.10	2" = 0.16	2 1/2" = 0.24			
3" = 0.37	3 1/2" = 0.50	4" = 0.65	6" = 1.46			
8" = 2.61	10" = 4.08	12" = 5.87				

		CHO	CTAW GEN	ERATION A	AMU MONIT	FOR WELLS			
Monitor Well:	MW-	9	4		Well Diame	eter:	4	inches	
Date: , Sampling Method	5/26/20	Pumped	-			umn Height: ell Depth - Static Wa	/3.02 ater Level)	ft	
Measured Well D	epth:	21.74	ft		TOC Eleva	tion:	480.04	ft	
Static Water Leve (Depth to Water)	al:	8.72			GW Elevatio	ion: n - Static Water Le	47/.3		
Maximum Drawd (10% of WCH + SWL)	own Depth	10.02	_ft		Well Volum (Water Colum	ne: n Height x Well Cas	8.463 sing Volume Fa		
	Date	Volume Purged (L)	Time	Elapsed Time (min)	Water Level (ft)	Turbidity (NTU)	Temp (C)	рН	Conductivity (uS/cm)
Start Pump	5/26/2021		10:29	BALL ST	BE SHE				
•	7-7-	2.25	10:36			1.18	194	5.60	1626.0
		1	10:39			1,22	18.9	5.27	1629.0
			10.42			1.35	18.8	5,09	1632.0
		4.5	10:45			1.13	187	5,05	1628

Sample Time:
Cample Time.
Sample Analyzed for:
Sample Analyzed 101.

Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Cobalt, Fluoride, Lead, Lithium, Mercury, Molybdenum, Selenium,

Thallium, Radium 226/228

Total Drawdown (ft):

Sampler Signature:

If possible, total drawdown will not exceed 0.33 ft.
If drawdown exceeds 10% of water column height, flow will be stopped and well allowed to recover.

Well Stabilization	
pH:	0.1 standard units
conductivity:	within 3%
temperature:	0.1 deg. C
turbidity:	<5 NTU or 10%

Well Casing Volumes	(gal/ft)		
1" = 0.041	1 1/2 " = 0.10	2" = 0.16	2 1/2" = 0.24
3" = 0.37	3 1/2" = 0.50	4" = 0.65	6" = 1.46
8" = 2.61	10" = 4.08	12" = 5.87	

Fina Depth: 9.5/ft

Monitor Well:	MW-12	Well Diameter:	4 inches
Date:	5/26/2021	Water Column Height:	12.19 ft
Sampling Method:	Pumped	(Measured Well Depth - Static W	ater Level)
Measured Weil Depti	h: 19.09	ft TOC Elevation:	474.19 ft
Static Water Level: (Depth to Water)	6.9	ft GW Elevation: (TOC Elevation - Static Water Le	461.29 ft
Maximum Drawdowr (10% of WCH + SWL)	Depth <u>8,/2</u>	ft Well Volume: (Water Column Height x Well Ca	7.994 gal

Start	Pump	

Date	Volume Purged (L)	Time	Elapsed Time (min)	Water Level (ft)	Turbidity (NTU)	Temp (C)	рН	Conductivity (uS/cm)
5/26/2021		9:40	E PRISE SI	1000	The Park Town		MARKET.	
77-7	2.5	9:49			14.32	19.3	6.31.	473.6
		9:52			10.77	18.9	6.44	472.7
		9:55			913	183	6.29	468.3,
	1.7	9.58			5.87	18.2	6.29	468 4
	4.25	10.01			5.72	18.7	6.30	468 8
							7/	

Sample	Time:
Sample	Analyzed for:

10:05

Antimony, Arsenic, Barium, Beryllium, Cadmlum, Chromium, Cobalt, Fluoride, Lead, Lithium, Mercury, Molybdenum, Selenium, Thallium, Radium 226/228

Total Drawdown (ft):

Drawdown/Water Column (%):

Final Dept: 8.05 ft

Sampler Signature:

If possible, total drawdown will not exceed 0.33 ft.

Well Stabilization						
pH:	0.1 standard units					
conductivity:	within 3%					
temperature:	0.1 deg. C					
turbidity:	<5 NTU or 10%					

Well Casing Volumes (gal/ft)							
1" = 0.041	1 1/2 " = 0.10	2" = 0.16	2 1/2" = 0.24				
3* = 0.37	3 1/2" = 0.50	4" = 0.65	6" = 1.46				
8" = 2.61	10" = 4.08	12" = 5.87					

Monitor Well:	MW-13	Well Diameter:	4inches
Date:	5-26-21	Water Column Height:	47.86 ft
Sampling Method:	Pumped	(Measured Well Depth - Static \) ft TOC Elevation:	Water Level) 584.48 ft
Measured Well Dept Static Water Level: (Depth to Water)	th: 106 58.14	ft TOC Elevation: ft GW Elevation: (TOC Elevation - Static Water L	526.34 ft
Maximum Drawdow (10% of WCH + SWL)	n Depth <u>62.92</u>		31,10 gal

Start	Pumn	

Date	Volume Purged (L)	Time	Elapsed Time (min)	Water Level (ft)	Turbidity (NTU)	Temp (C)	рН	Conductivity (uS/cm)
5-26-21		17:20						Hillian III S
	70	17.42		6032	1.33	20.9	6.93	122.9
		1247			0.74	20.8	6.88	121.6
	10.0	1251		61.56	0.70	20.7	6.87	223.7
						_		
				-				

Sample	Time:
Sample	Analyzed for:

Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Cobalt, Fluoride, Lead, Lithium, Mercury, Molybdenum, Selenium,

Thallium, Radium 226/228

Total Drawdown (ft): Drawdown (Water Column (%):

Sampler Signature:

If possible, total drawdown will not exceed 0.33 ft.

If drawdown exceeds 10% of water column height, flow will be stopped and well allowed to recover.

Well Stabilization						
pH:	0.1 standard units					
conductivity:	within 3%					
temperature: 0.1 deg. C						
turbidity:	<5 NTU or 10%					

	Well Casing	Volumes (gal/ft)	
1" = 0.041	1 1/2 " = 0.10	2" = 0.16	2 1/2" = 0.24
3" = 0.37	3 1/2" = 0.50	4" = 0.65	6" = 1.46
8" = 2.61	10" = 4.08	12" = 5.87	

Fiell Blank@12:35

		СНОС	CTAW GEN	ERATION A	TINOM UMA	OR WELLS			
Monitor Well:	MW-1	4			Well Diame	eter:	4	inches	
	5-26-2				Water Colu	umn Height: ell Depth - Static Wa	32,2	S it	
Sampling Method:		Pumped							
Measured Well Dep		60.97			TOC Eleva		593.84		
Static Water Level: (Depth to Water)	:	28.72	,ft		GW Elevation	ion: n - Static Water Lev	565.12	<u>.</u> ft	
Maximum Drawdov (10% of WCH + SWL)	wn Depth	31,44	ft		Well Volun		20.96		
	Date	Volume Purged (L)	Time	Elapsed Time (min)	Water Level (ft)	Turbidity (NTU)	Temp (C)	рН	Conductivity (uS/cm)
Start Pump	3-76-21		9.55			WELL STORY			
otarr, amp		10.0	1032		29.85	2.09	19.9	5.39	134.7
		101.5	1036			118	70.0	4.99	130,3
			1040			1.06	199	4.85	170, 2
			1044			0.99	19.0	4.89	129.6
		13.5	1048	53	30.31	0.21	19.7	402	129.3
					,				
							-		
						1	+		
		11.							

Sample Time:

Sample Analyzed for:

10:55

Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Cobalt, Fluoride, Lead, Lithium, Mercury, Molybdenum, Selenium,

Thallium, Radium 226/228

Total Drawdown (ft):

Drawdown/Water Column (%):

-

Duplicate Lakin hire.

Sampler Signature:

If possible, total drawdown will not exceed 0.33 ft.

Well Stabilization				
pH:	0.1 standard units			
conductivity:	within 3%			
temperature:	0.1 deg. C			
turbidity:	<5 NTU or 10%			

Well Casing Volumes (gal/ft)				
1" = 0.041	1 1/2 " = 0.10	2" = 0.16	2 1/2" = 0.24	
3" = 0.37	3 1/2" = 0.50	4" = 0.65	6" = 1.46	
8" = 2.61	10" = 4.08	12" = 5.87		

Monitor Well:	OW-2	Well Diameter:	4inche
Date: 5/26/	2021	Water Column Height:	
Sampling Method:	Pumped	(Measured Well Depth - Static	Water Level)
Measured Well Depth:	27.05 ft	TOC Elevation:	489.40 ft
Static Water Level:	10.46 ft	GW Elevation:	478.94 ft
(Depth to Water)		(TOC Elevation - Static Water	Level)
Maximum Drawdown Depth	12.12 ft	Well Volume:	10.784gal
(10% of WCH + SWL)		(Water Column Height x Well	Casing Volume Factor)

Start	Pi	ımn	Ŀ

Date	Volume Purged (L)	Time	Elapsed Time (min)	Water Level (ft)	Turbidity (NTU)	Temp (C)	рН	Conductivity (uS/cm)
1/26/2021		8:55						1/0 - /
**	3.0	9.07			6.17	21.2	635	480.1
		9:10			0.58	19.7	643	467.4
		9:13			0.48	188	6.32	466.4
		9:16			0.14	19,5	6.39	469.8
					4.25	18.8	6.28	460.1
	5.0	9:22			0.32	18.7	6.36	465.2

Sample	Time:
Sample	Analyzed for:

7:25

Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Cobalt, Fluoride, Lead, Lithium, Mercury, Molybdenum, Selenium,

Thallium, Radium 226/228

Total Drawdown (ft):

Sampler Signature:

Drawdown/Water Column (%):

144 fr

2

Finac Depth: 11.91

If possible, total drawdown will not exceed 0.33 ft.

Well Stabilization				
pH:	0.1 standard units			
conductivity: within 3% temperature: 0.1 deg. C				

	Well Casing	Volumes (gal/ft)	
1" = 0.041	1 1/2 " = 0.10	2" = 0.16	2 1/2" = 0.24
3" = 0.37	3 1/2" = 0.50	4" = 0.65	6" = 1.46
8" = 2.61	10" = 4.08	12" = 5.87	

Monitor Well: CCR	-2	Well Diameter:	4inches
Date: 9/8/2		Water Column Height:	32.35 ft
Sampling Method:	Pumped	(Measured Well Depth - Static Wa	ater Level)
Measured Well Depth:	84.5 ft	TOC Elevation:	542.50_ft
Static Water Level: (Depth to Water)	48.15 ft	GW Elevation: (TOC Elevation - Static Water Lev	494,35ft
Maximum Drawdown Depth (10% of WCH + SWL)	51.17 ft	Well Volume: (Water Column Height x Well Cas	23.65 gal sing Volume Factor)

Start	Pump

	Volume		Elapsed	Water				
Date	Purged (L)	Time	Time (min)	Level (ft)	Turbidity (NTU)	Temp (C)	рН	Conductivity (uS/cm)
9/8/21		12:10		Rich III	K. O. S.			HE COLUMN
	2.04	12:25			0.93	24.0	6.61	209.2
		12:29			1.18	23.9	6.62	199.2
		12:33			1.18	22.6	6.47	197.6
		12:37			1.06	22.3	6.57	196.8
		12:41			1.30	22.2	6.50	196.1
	4.25L	2:45			1,26	22.4	6.52	195.4
								- 2
	_							
	-							
	-							
	-							

12:50

Sample Analyzed for:

Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Cobalt, Fluoride, Lead, Lithium, Mercury, Molybdenum, Selenium,

Thallium, Radium 226/228

Total Drawdown (ft):

Drawdown/Water Column (%):

3.93%

Sampler Signature:

Final Depth: 49.58

If possible, total drawdown will not exceed 0.33 ft.

Well Stabilization				
pH:	0.1 standard units			
conductivity: within 3%				
temperature: 0.1 deg. C				
turbidity:	<5 NTU or 10%			

	Well Casing	Volumes (gal/ft)	
1" = 0.041	1 1/2 " = 0.10	2" = 0.16	2 1/2" = 0.24
3" = 0.37	3 1/2" = 0.50	4" = 0.65	6" = 1.46
8" = 2.61	10" = 4.08	12" = 5.87	

Monitor Well:	CCR-3	Well Diameter:	
Date: _ q /-	8/21	Wen Diameter:	4inches
Sampling Method: Measured Well Depth: Static Water Level: (Depth to Water) Maximum Drawdown Depth (10% of WCH + SWL)	Pumped 53 ft 25.7 ft 27.98 ft	Water Column Height: (Measured Well Depth - Static W TOC Elevation: GW Elevation: (TOC Elevation - Static Water Le Well Volume: (Water Column Height x Well Cas	504.78 ft 479.58 ft vel)

Start	Pump

Date	Volume Purged (L)	Time	Elapsed Time (min)	Water Level (ft)	Turbidity (NTU)	Temp (C)	рН	Conductivity (uS/cm)
18/21		08:10	RATE OF THE PARTY			(6)	-	(uS/cm)
	27	08:18			12.28	19.1	100	Al -
	1	08:22			7.70		661	615.1
		08:26			7.70	19.5	6.16	587.0
		08:30			6.12	19.4	6.17	5760
	4.5 L	08 34			6.17	19.4	6.15	573.3 571.0
					6.11	19.5	6-10	571.0
	-							

Sample	Time:
Sample	Analyzed for:

08:38

Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Cobalt, Fluoride, Lead, Lithium, Mercury, Molybdenum, Selenium,

Total Drawdown (ft): Drawdown/Water Column (%):

Sampler Signature:

Final Depth: 26.6 ft

If possible, total drawdown will not exceed 0.33 ft.

I Stabilization
0.1 standard units
within 3%
0.1 deg. C
<5 NTU or 10%

	Well Casing	Volumes (gal/ft)	
1" = 0.041	1 1/2 " = 0.10	2" = 0.16	
3" = 0.37	3 1/2" = 0.50		2 1/2" = 0.24
8" = 2.61	10" = 4.08	4" = 0.65	6" = 1.46
	10 - 4.08	12" = 5.87	

Monitor Well:	CR-4	Well Diameter:	4inches
Date: 9/8	121	Water Column Height:	28.15 ft
Sampling Method:	Pumped	(Measured Well Depth - Static Wa	ater Level)
Measured Well Depth:	53 ft	TOC Elevation:	505.68 ft
Static Water Level:	24.85 ft	GW Elevation:	<u>480.83</u> ft
(Depth to Water)	07,1	(TOC Elevation - Static Water Lev	vel)
Maximum Drawdown Depth	27.67 ft	Well Volume:	[8,30] gal
(10% of WCH + SWL)		(Water Column Height x Well Cas	sing Volume Factor)

Start	Pump	

Date	Volume Purged (L)	Time	Elapsed Time (min)	Water Level (ft)	Turbidity (NTU)	Temp (C)	рН	Conductivity (uS/cm)
118121		1:50	() () () ()					
	24	. 30			31.0	22.5	637	339.2
		1:33			91.2	211	640	325.8
		1.36			75.7	206	6.33	322.3
		1:39			73.8	20.3	632	3185
		42			66.7	21,2	6.29	317,1
		1.45			558	21.2	6.36	317.C
		1.48			51.9	21.3	G.34	3195
	+	1:21			106	21.1	9.35	317.1
		1.54			110	21,3	6.29	318.1
	5L	1,57			95.6	21,2	6,37	317,4
						-	-	
							-	
	-					-	-	
						-	-	
-								
	_							
					-			
	-				-	-		

Sample Time:	19.00		
Sample Analyzed for:	Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Cob	palt, Fluoride, Lead, Lithium, Mercury, Molybd	enum, Selenium,
	Thallium, Radium 226/228		
Total Drawdown (ft):	1.35		
Drawdown/Water Column (%):	4.8090	$\sim 10^{-11}$	21211
~ ()de		Final Depth	Cb. C+7
Sampler Signature:		•	

If possible, total drawdown will not exceed 0.33 ft.

Sampler Signature:

Well Stabilization					
0.1 standard units					
within 3%					
0.1 deg. C					
<5 NTU or 10%					

Well Casing Volumes (gal/ft)						
1" = 0.041	1 1/2 " = 0.10	2" = 0.16	2 1/2" = 0.24			
3" = 0.37	3 1/2" = 0.50	4" = 0.65	6" = 1.46			
8" = 2.61	10" = 4.08	12" = 5.87				

Monitor Well:	CCR	-5		Well Diameter:	4	inche
Date:	09 08 7	21		Water Column Height:		ft
Sampling Method:		Pumped		(Measured Well Depth - Static W	ater Level)	
Measured Well Dept	th:	34.55 ff	t	TOC Elevation:	470.46	ft
Static Water Level:		6.01	•	GW Elevation:	464.45	ft
(Depth to Water)			I	(TOC Elevation - Static Water Le	vel)	
Maximum Drawdow	n Depth	₽.8 € ft	t	Well Volume:	18.55	gal
(10% of WCH + SWL)				(Water Column Height x Well Ca	sing Volume Fac	tor)

Start	Pump

Date	Volume Purged (L)	Time	Elapsed Time (min)	Water Level (ft)	Turbidity (NTU)	Temp (C)	рН	Conductivity (uS/cm)
09 08 24	(L)	08:04	(IIIII)	(11)	(NTO)		Remitted to	(de/only
0,000	7.5	08.19			169	194	6.64	1036
	1.0	18:21			160	195	6.64	1013
	9.5	1824	(8.06	172	19.5	6.60	1019
					11 10			,
				1				
				Final D	pth			
					ı			
							-	
							-	
		-						
		-					-	
								0=

Sample	Time:	
Sample	Analyzed	for:

8.2

Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Cobalt, Fluoride, Lead, Lithium, Mercury, Molybdenum, Selenium,

Thallium, Radium 226/228

Total Drawdown (ft): Drawdown/Water Column (%):

2.05

Sampler Signature:

If possible, total drawdown will not exceed 0.33 ft.

Well Stabilization						
pH:	0.1 standard units					
conductivity: within 3%						
temperature:	0.1 deg. C					
turbidity:	<5 NTU or 10%					

Well Casing Volumes (gal/ft)						
1" = 0.041	1 1/2 " = 0.10	2" = 0.16	2 1/2" = 0.24			
3" = 0.37	3 1/2" = 0.50	4" = 0.65	6" = 1.46			
8" = 2.61	10" = 4.08	12" = 5.87				

Monitor Well:	MW-	7			Well Diame	eter:	4	inches	
Date:	09 08	71	-					•	
						ı mn Height: ell Depth - Static Wa	22.0	ft	
Sampling Method Measured Well De		Pumped 56.92	ft		TOC Elevat	_	571.76	ft	
Static Water Leve	-	34.92 ft			GW Elevati		- 071.70	ft	
(Depth to Water)			n KAS			n - Static Water Lev	el)	· · ·	
Maximum Drawdo (10% of WCH + SWL)	own Depth				Well Volum (Water Column	1e: n Height x Well Cas	ing Volume Fac	gal tor)	
(10% 01 *********************************		37.12							
	Date	Volume Purged	Time	Elapsed Time	Water Level	Turbidity	Temp	рН	Conductivity
	Date	(L)	Tille	(min)	(ft)	(NTU)	(C)	pi.	(uS/cm)
Start Pump	09 08 21	REAL PROPERTY.	10.30				10-	1 011	
			1049			2,06	187	6.54	278.0
	-	(D	1052		35.79	1,02	107	651	274 0
		6.0	1035		25.11	0.70	10-1	0,37	2 17.0
					1	,			
					on Rep	044			
					,	- 5			
		-							
		-							
		+							
		-							
		70 E							
		11	$\Lambda \Lambda$				ta.		
Sample Time: Sample Analyzed	for	Antimony Are	opio Borium Br	wallium Cadmius	. Chromium C	obalt, Fluoride, Lead	d Lithium Merc	ury Mohdodi	enum Selenium
Sample Amaryzeu	101.	Thallium, Rad		arymum, Cadmium	i, Chromain, O	oban, i idonde, Lead	z, Eltillatti, Merc	ory, worybor	Sharri, Ocicinarii,
Total Drawdown Drawdown/Water Sampler Signatur	column (%):		-						
- durbing a Summer	-								
If possible, total drawdo If drawdown exceeds			il be stopped an	d well allowed to	recover.				

Well Stabilization						
pH:	0.1 standard units					
conductivity:	within 3%					
temperature:	0.1 deg. C					
turbidity:	<5 NTU or 10%					

Well Casing Volumes (gal/ft)							
1" = 0.041	1 1/2 " = 0.10	2" = 0.16	2 1/2" = 0.24				
3" = 0.37	3 1/2" = 0.50	4" = 0.65	6" = 1.46				
8" = 2.61	10" = 4.08	12" = 5.87					

				0.17.550.6		· · · · · · · · · · · · · · · · · · ·			
Monitor Well:	MW-	9	-		Well Diame	eter:	44	inches	
Date:	9/8/21		-		Water Colu	ımn Height:	14.16	ft	
Sampling Method:		Pumped	-		,	ell Depth - Static Wa			
Measured Well De	•	21.74	ft		TOC Elevat		480.04	-	
Static Water Level (Depth to Water)	l:	7.58	_ft		GW Elevation	i on: n - Static Water Lev	472.46	₂Ħ	
Maximum Drawdo	wn Denth	9 99	ft		Well Volum		9,204	gal	
(10% of WCH + SWL)		•			(Water Column	n Height x Well Cas			
	Date	Volume Purged (L)	Time	Elapsed Time (min)	Water Level (ft)	Turbidity (NTU)	Temp (C)	рН	Conductivity (uS/cm)
Start Pump	9/8/21	(-)	9.15	(11111)	100	(1410)		The same of	
Start Fullip	11016	26	9:20			1.95	21.1	4.89	1346
		2 0	9:24		1	2,19	21.0	460	1348
			9:28			2.07	210	4.57	1343
		41	9:32			2.64	21.1	4.56	1347
39			7.30		1	2101	01	1.00	1-2 1 1
					1				
				-					
Sample Time: Sample Analyzed	for:	09.40 Antimony, Ars	enic, Barium, Be	ryllium, Cadmiu	— m, Chromium, Co	obalt, Fluoride, Lead	l, Lithium, Merc	ury, Molybdei	num, Selenium,
		Thailium, Rad	ium 226/228						
Total Drawdown (ft):		6.57	,				_	
Drawdown/Water	Column (%):		4.039	0		0 11 :	815	ft.	
					Final	Depth :	0.1	• 52	
Sampler Signature:	C	12							
If drawdown exceeds 10	own will not exceed to % of water column hei	0.33 ft. ght, flow will be	stopped and wel	I allowed to reco	over.				
Well Stabilization			Well Casing Vo	himos (gal/ft)					
pH:	0.1 standard units		1" = 0.041	iailies (Agilii)	1 1/2 " = 0.10		2" = 0.16		2 1/2" = 0.24
conductivity:	within 3%		3" = 0.37		3 1/2" = 0.50		4" = 0.65		6" = 1.46
temperature:	0.1 deg. C	J	8" = 2.61		10" = 4.08		12" = 5.87		
turbidity:	<5 NTU or 10%								

Monitor Well:	MW-1	12	Well Diameter:	4	inches
Date:	9/2/21		Water Column Height:	13.79	ft
Sampling Method:		Pumped	(Measured Well Depth - Static W	ater Level)	
Measured Well De	pth:	19.09	ft TOC Elevation:	474.19	ft
Static Water Level	:	5.3	ft GW Elevation:	468.89	ft
(Depth to Water)		0 10	(TOC Elevation - Static Water Le	vel)	
Maximum Drawdo	wn Depth	6.68	ft Well Volume:	8.96	gal
(10% of WCH + SWL)	•	-	(Water Column Height x Well Ca	sing Volume Fact	tor)

Start	Pump	

Date	Volume Purged (L)	Time	Elapsed Time (min)	Water Level (ft)	Turbidity (NTU)	Temp (C)	рН	Conductivity (uS/cm)
9/8/21		10:05		AUN IN				
	2L	10 15			5.73	22.1	5,90	400.8
		10:19			9.0	22.0	6.02	389.7
		10:23			9.12	22.0	6.04	387.6
	4.25 L	10:27			9.23	22.0	6.0	386 #

Samp	e T	ime	:	

10:38

Sample Analyzed for:

Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Cobalt, Fluoride, Lead, Lithium, Mercury, Molybdenum, Selenium,

Thallium, Radium 226/228

Total Drawdown (ft):

0.9/4

Drawdown/Water Column (%):

6.53%

Sampler Signature:

Final Depth = 6.2ft

If possible, total drawdown will not exceed 0.33 ft.

Well Stabilization		
pH:	0.1 standard units	
conductivity:	within 3%	
temperature:	0.1 deg. C	
turbidity:	<5 NTU or 10%	

	Well Casing	Volumes (gal/ft)	
1" = 0.041	1 1/2 " = 0.10	2" = 0.16	2 1/2" = 0.24
3* = 0.37	3 1/2" = 0.50	4" = 0.65	6" = 1.46
8* = 2.61	10" = 4.08	12" = 5.87	

Monitor Well:	MW-13	Well Diameter:	4inches
Date:	90821	Water Column Height:	47.07 ft
Sampling Method:	Pumped	(Measured Well Depth - Static Wa	ater Level)
Measured Well Depth:	106 ft	TOC Elevation:	584.48 ft
Static Water Level:	S8.93 ft	GW Elevation:	S25, SSft
(Depth to Water)	-	(TOC Elevation - Static Water Lev	vel)
Maximum Drawdown De	epth 63.63 ft	Well Volume:	30. S 9 gal
(10% of WCH + SWL)		(Water Column Height x Well Cas	sing Volume Factor)

Start	Pumn	

Date	Volume Purged (L)	Time	Elapsed Time (min)	Water Level (ft)	Turbidity (NTU)	Temp (C)	pН	Conductivity (uS/cm)
1580 00		0900		I TOTAL ST				
	875	0927			10.34	20.4	6,95	236.3
	3 .5	9:30			2.00	20,4	6.74	228.1
		9 33			0,37	20.5	6.78	2253
		936			0.31	20.k	G.70	225.3
	11.0	9 39		6.31	0.85	20.5	6.71	226.3
			1	1 100	oth			
			1	, , ,				

Sample	Time:	
Sample	Analyzed	for

09:45

Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Cobalt, Fluoride, Lead, Lithium, Mercury, Molybdenum, Selenium,

Thallium, Radium 226/228

Total Drawdown (ft): Drawdown/Water Column (%): 2.38

Sampler Signature:

If possible, total drawdown will not exceed 0.33 ft.

Well Stabilization				
pH:	0.1 standard units			
conductivity:	within 3%			
temperature:	0.1 deg. C			
turbidity:	<5 NTU or 10%			

	Well Casing	Volumes (gal/ft)	
1" = 0.041	1 1/2 " = 0.10	2" = 0.16	2 1/2" = 0.24
3" = 0.37	3 1/2" = 0.50	4" = 0.65	6" = 1.46
8" = 2.61	10" = 4.08	12" = 5.87	

		CHOC	JIAN GEN	LIVATION	WIO MOINT	OK WELLS			
Monitor Well:	MW-1	4			Well Diame	ter:	4	inches	
Date: Sampling Method Measured Well De Static Water Leve (Depth to Water) Maximum Drawdo (10% of WCH + SWL)	Pumped 60.97 ft 28.51 ft 30.06 ft KAS			Water Column Height: 32.46 ft (Measured Well Depth - Static Water Level) TOC Elevation ⁽¹⁾ : 593.84 ft GW Elevation: 565.33 ft (TOC Elevation - Static Water Level) Well Volume: 9al (Water Column Height x Well Casing Volume Factor)					
	Date	Volume Purged (L)	Time	Elapsed Time (min)	Water Level (ft)	Turbidity (NTU)	Temp (C)	рН	Conductivity (uS/cm)
Start Pump	090821		1130		30.00	0.44	21.2 21.4 21.5 21.6	4.96 4.85 4.82 4.80	127.4 126.5 123.8 172.6
Sample Time: Sample Analyzed	for:			sryllium, Cadmiun	n, Chromium, Co	balt, Fluoride, Lead	l, Lithium, Mercu	ıry, Molybden	um, Selenium,
Total Drawdown (Drawdown/Water Sampler Signature If possible, total drawdown exceeds a	Column (%): e: wn will not exceed 0.33		1.5	. 77 % .	recover.	Dup	ol. (1) 12 Bl.	, T,	Ken Here Kenhere.
Well Stat	oilization	i - i			We	ell Casing Volumes	(gal/ft)		
pH: conductivity:	0.1 standard units within 3%		1" = 0.041 3" = 0.37		1 1/2 " = 0.10 3 1/2" = 0.50		2" = 0.16 4" = 0.65		2 1/2" = 0.24 6" = 1.46

Well	Stabilization
pH:	0.1 standard units
conductivity:	within 3%
temperature:	0.1 deg. C
turbidity:	<5 NTU or 10%

Well Casing Volumes (gal/ft)								
1" = 0.041	1 1/2 " = 0.10	2" = 0.16	2 1/2" = 0.24					
3" = 0.37	3 1/2" = 0.50	4" = 0.65	6" = 1.46					
8" = 2.61	10" = 4.08	12" = 5.87						

Monitor Well:	OW-2	Well Diameter:	4 inches
Date:	1/51	Water Column Height:	
Sampling Method:	Pumped	(Measured Well Depth - Static W	ater Level)
Measured Well Depth:	27.05 ft	TOC Elevation:	489.40ft
Static Water Level: (Depth to Water) Maximum Drawdown Depth (10% of WCH + SWL)	10.5 ft 12.16 ft	GW Elevation: (TOC Elevation - Static Water Let Well Volume: (Water Column Height x Well Cas	10.76_gal

Date	Volume Purged (L)	Time	Elapsed Time (min)	Water Level (ft)	Turbidity (NTU)	Temp (C)	рН	Conductivity (uS/cm)
9/8/21	TIBERS OF	11:15	MAN WE	(SIZE	BANK DESIGNATION OF THE PERSON	1138316.61		W. L. W. C. W.
1177	2L.	11.75			1.32	22.0	5.73	504.8
		11:28			1.69	206	5.66	4956
		11:31			1.76	20.5	5.71	4386
		11:34			1.61	20.5	5.68	485 9
	3.754	11:37			1,31	20.4	5.71	483.4
	-							
	-					-		
	-					+		
	-					-		
	-							
	+							

L L									
Sample Time: Sample Analyzed fo	or:			eryllium, Cadmiu	m, Chromium, C	obalt, Fluoride, Lead	1, Lithium, Merc	ury, Molybdeni	um, Selenium,
Total Drawdown (ft Drawdown/Water C	•	Thallium, Radi	6.10	*/n	ח וו	11516	,		
Sampler Signature:			3	Final 1	Jepth	11.5114	,		

If possible, total drawdown will not exceed 0.33 ft.

Stabilization
0.1 standard units
within 3%
0.1 deg. C
<5 NTU or 10%

Well Casing Volumes (gal/ft)							
1" = 0.041	1 1/2 " = 0.10	2" = 0.16	2 1/2" = 0.24				
3" = 0.37	3 1/2" = 0.50	4" = 0.65	6" = 1.46				
8" = 2.61	10™ = 4.08	12" = 5.87					

APPENDIX D

2021 GROUNDWATER MONITORING SUMMARY

Detection and Assessment Monitoring Results:

Detected

Detected above Prediction Limit

Detected above Prediction Limit and Groundwater Protection Standard (GWPS)

NS = Not Sampled

Antimony (Sb) Monitoring Results (mg/L)

				, ,		<u> </u>						
	Monitoring Well											
Date	CCR-2	CCR-3	CCR-4	CCR-5	MW-7	MW-9	MW-12	MW-13	MW-14	OW-2		
	Down	Down	Down	Down/ Boundary	Up	Down	Down	Up	Up	Down		
3/15-16/21	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
5/26/21	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
9/8/21	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
			Predi	ction Limit =	0.002, GWP	S = 0.006						

Arsenic (As) Monitoring Results (mg/L)

	Monitoring Well											
Date	CCR-2	CCR-3	CCR-4	CCR-5	MW-7	MW-9	MW-12	MW-13	MW-14	OW-2		
	Down	Down	Down	Down/ Boundary	Up	Down	Down	Up	Up	Down		
3/15-16/21	ND	ND	ND	0.00316	ND	ND	ND	ND	ND	ND		
5/26/21	ND	ND	ND	0.00284	ND	ND	ND	ND	ND	ND		
9/8/21	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
			Predi	ction Limit =	0.002, GWP	S = 0.010						

Barium (Ba) Monitoring Results (mg/L)

	Monitoring Well											
Date	CCR-2	CCR-3	CCR-4	CCR-5	MW-7	MW-9	MW-12	MW-13	MW-14	OW-2		
	Down	Down	Down	Down/ Boundary	Up	Down	Down	Up	Up	Down		
3/15-16/21	0.11	0.0840	0.17	0.038	0.076	0.094	0.233	0.161	0.012	0.047		
5/26/21	0.111	0.072	0.156	0.036	0.073	0.090	0.210	0.173	0.013	0.058		
9/8/21	0.094	0.0640	0.13	0.044	0.082	0.084	0.174	0.159	0.011	0.046		
			Pre	diction Limit	= 0.2558, G\	NPS = 2						

Beryllium (Be) Monitoring Results (mg/L)

	Monitoring Well												
Date	CCR-2	CCR-3	CCR-4	CCR-5	MW-7	MW-9	MW-12	MW-13	MW-14	OW-2			
	Down	Down	Down	Down/ Boundary	Up	Down	Down	Up	Up	Down			
3/15-16/21	ND	ND	ND	ND	ND	0.00594	ND	ND	ND	ND			
5/26/21	ND	ND	ND	ND	ND	0.00491	ND	ND	ND	ND			
9/8/21	9/8/21 ND												
	Prediction Limit = 0.001, GWPS = 0.004												

Boron (B) Monitoring Results (mg/L)

				Monit	oring Well						
Date	CCR-2	CCR-3	CCR-4	CCR-5	MW-7	MW-9	MW-12	MW-13	MW-14	OW-2	
	Down	Down	Down	Down/ Boundary	Up	Down	Down	Up	Up	Down	
3/15-16/21	ND	ND	ND	0.089	ND	ND	ND	ND	ND	ND	
5/26/21	ND	ND	ND	0.091	ND	ND	ND	ND	ND	ND	
9/8/21	ND	ND	ND	0.102	ND	ND	ND	ND	ND	ND	
	Prediction Limit = 0.050										

⁽¹⁾ Appendix III constituent not required to be monitored during initial assessment monitoring event.

⁽²⁾ Appendix III constituent not required to be monitored during the annual assessment monitoring event.

Calcium (Ca) Monitoring Results (mg/L)

	Monitoring Well												
Date	CCR-2	CCR-3	CCR-4	CCR-5	MW-7	MW-9	MW-12	MW-13	MW-14	OW-2			
	Down	Down	Down	Down/ Boundary	Up	Down	Down	Up	Up	Down			
3/15-16/21	13.8	39.9	25.3	161	31.7	61.2	29.4	18.1	0.571	30.8			
5/26/21	14	37.1	24.5	112	32	61.7	32.1	20	0.643	33.5			
9/8/21	9/8/21 11.3 30 20 101 34.3 50.9 24.6 17.5 0.504 29.5												
	Prediction Limit = 85.8879												

⁽¹⁾ Appendix III constituent not required to be monitored during initial assessment monitoring event.

Cadmium (Cd) Monitoring Results (mg/L)

	Monitoring Well												
Date	CCR-2	CCR-3	CCR-4	CCR-5	MW-7	MW-9	MW-12	MW-13	MW-14	OW-2			
	Down	Down	Down	Down	Up	Down	Down	Up	Up	Down			
3/15-16/21	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			
5/26/21	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			
9/8/21	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			
	Prediction Limit = 0.001, GWPS = 0.005												

⁽¹⁾ Appendix IV constituent not required to be monitored during detection monitoring.

Chloride (CI) Monitoring Results (mg/L)

				Monit	oring Well						
Date	CCR-2	CCR-3	CCR-4	CCR-5	MW-7	MW-9	MW-12	MW-13	MW-14	OW-2	
	Down	Down	Down	Down/ Boundary	Up	Down	Down	Up	Up	Down	
3/15-16/21	8.29	4.53	7.73	6.87	3.04	466	56.4	3.73	18.6	43.5	
5/26/21	-	-	-	-	-	-	-	-	-	-	
9/8/21	2.72	5	7.79	6.54	3.61	410	10.7	3.89	22.4	62.1	
	Prediction Limit = 26.6034										

⁽¹⁾ Appendix III constituent not required to be monitored during initial assessment monitoring event.

Chromium (Cr) Monitoring Results (mg/L)

	Monitoring Well												
Date	CCR-2	CCR-3	CCR-4	CCR-5	MW-7	MW-9	MW-12	MW-13	MW-14	OW-2			
	Down	Down	Down	Down/ Boundary	Up	Down	Down	Up	Up	Down			
3/15-16/21	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			
5/26/21	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			
9/8/21	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			
			Pred	diction Limit	= 0.001, GW	PS = 0.1							

Cobalt (Co) Monitoring Results (mg/L)

	```````												
	Monitoring Well												
Date	CCR-2	CCR-3	CCR-4	CCR-5	MW-7	MW-9	MW-12	MW-13	MW-14	OW-2			
	Down	Down	Down	Down/ Boundary	Up	Down	Down	Up	Up	Down			
3/15-16/21	ND	0.0138	0.0043	0.0299	ND	0.0237	0.00929	ND	ND	ND			
5/26/21	ND	0.0163	0.00233	0.0117	ND	0.0209	0.022	ND	ND	ND			
9/8/21	9/8/21 ND 0.0206 0.00369 0.0105 ND 0.0181 0.00665 ND ND ND												
	Prediction Limit = 0.001, GWPS = 0.006												

⁽²⁾ Appendix III constituent not required to be monitored during the annual assessment monitoring event.

⁽²⁾ Appendix III constituent not required to be monitored during the annual assessment monitoring event.

# Fluoride (F) Monitoring Results (mg/L)

				` '		` ` ,					
				Monit	oring Well						
Date	CCR-2	CCR-3	CCR-4	CCR-5	MW-7	MW-9	MW-12	MW-13	MW-14	OW-2	
	Down	Down	Down	Down/ Boundary	Up	Down	Down	Up	Up	Down	
3/15-16/21	ND	ND	ND	ND	0.23	0.51	ND	ND	ND	0.26	
5/26/21	ND	0.22	ND	ND	0.22	0.51	ND	ND	ND	0.23	
9/8/21	9/8/21 ND 0.24 ND ND ND 0.41 ND ND ND 0.25										
	Prediction Limit = 0.30, GWPS = 4.0										

# Lead (Pb) Monitoring Results (mg/L)

	2544 (1.5) monitoring 1.5541.5 (119.2)												
	Monitoring Well												
Date	CCR-2	CCR-3	CCR-4	CCR-5	MW-7	MW-9	MW-12	MW-13	MW-14	OW-2			
	Down	Down	Down	Down/ Boundary	Up	Down	Down	Up	Up	Down			
3/15-16/21	ND	ND	ND	ND	ND	0.00191	ND	ND	ND	ND			
5/26/21	ND	ND	ND	ND	ND	0.00111	ND	ND	ND	ND			
9/8/21	9/8/21 ND												
	Prediction Limit = 0.001, GWPS = 0.015												

# Lithium (Li) Monitoring Results (mg/L)

	Monitoring Well												
Date	CCR-2	CCR-3	CCR-4	CCR-5	MW-7	MW-9	MW-12	MW-13	MW-14	OW-2			
	Down	Down	Down	Down/ Boundary	Up	Down	Down	Up	Up	Down			
3/15-16/21	3/15-16/21 ND 0.072 ND 0.097 ND 0.051 ND ND ND ND												
5/26/21	ND	0.107	ND	ND	ND	0.075	ND	ND	ND	ND			
9/8/21	9/8/21 ND 0.104 ND 0.07 ND 0.087 ND ND ND 0.046												
	Prediction Limit = 0.050, GWPS = 0.050												

# Mercury (Hg) Monitoring Results (mg/L)

	mercus, (rig, memoring receive (mg)												
	Monitoring Well												
Date	CCR-2	CCR-3	CCR-4	CCR-5	MW-7	MW-9	MW-12	MW-13	MW-14	OW-2			
	Down	Down	Down	Down/ Boundary	Up	Down	Down	Up	Up	Down			
3/15-16/21	-	-	-	-	-	-	-	-	-	-			
5/26/21	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			
9/8/21	9/8/21												
	Prediction Limit = 0.002, GWPS = 0.002												

⁽¹⁾ Appendix IV constituent not required to be monitored during detection monitoring.

# Molybdenum (Mo) Monitoring Results (mg/L)

				Monit	oring Well							
Date	CCR-2	CCR-3	CCR-4	CCR-5	MW-7	MW-9	MW-12	MW-13	MW-14	OW-2		
	Down	Down	Down	Down/ Boundary	Up	Down	Down	Up	Up	Down		
3/15-16/21	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
5/26/21	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
9/8/21	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
	Prediction Limit = 0.001, GWPS =0.100											

⁽²⁾ Constituent not previously detected; therefore, not included in further assessment monitoring.

# Selenium (Se) Monitoring Results (mg/L)

				. ,							
	Monitoring Well										
Date	CCR-2	CCR-3	CCR-4	CCR-5	MW-7	MW-9	MW-12	MW-13	MW-14	OW-2	
	Down	Down	Down	Down/ Boundary	Up	Down	Down	Up	Up	Down	
3/15-16/21	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
5/26/21	ND	ND	ND	0.00806	ND	0.00453	ND	ND	ND	ND	
9/8/21	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
			Pred	iction Limit :	= 0.001, GWI	PS = 0.05					

# Sulfate (SO4) Monitoring Results (mg/L)

( )											
Monitoring Well											
Date	CCR-2	CCR-3	CCR-4	CCR-5	MW-7	MW-9	MW-12	MW-13	MW-14	OW-2	
	Down	Down	Down	Down/ Boundary	Up	Down	Down	Up	Up	Down	
3/15-16/21	15.5	261	31.5	1290	36.6	164	79.6	5.14	10.2	118	
5/26/21	•	-	-	-	-	-	-	-	-	-	
9/8/21	15.7	292	33.9	612	51.1	ND	11.1	ND	7.82	122	
				Prediction	Limit = 44.81	102					

⁽¹⁾ Appendix III constituent not required to be monitored during initial assessment monitoring event.

# Thallium (TI) Monitoring Results (mg/L)

	Monitoring Well											
Date	CCR-2	CCR-3	CCR-4	CCR-5	MW-7	MW-9	MW-12	MW-13	MW-14	OW-2		
	Down	Down	Down	Down/ Boundary	Up	Down	Down	Up	Up	Down		
3/15-16/21	-	-	-	-	-	-	-	-	-	-		
5/26/21	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
9/8/21	-	-	-	-	-	-	-	-	-	-		
	Prediction Limit = 0.001, GWPS = 0.002											

⁽¹⁾ Appendix IV constituent not required to be monitored during detection monitoring.

# Total Dissolved Solids (TDS) Monitoring Results (mg/L)

	Monitoring Well											
Date	CCR-2	CCR-3	CCR-4	CCR-5	MW-7	MW-9	MW-12	MW-13	MW-14	OW-2		
	Down	Down	Down	Down/ Boundary	Up	Down	Down	Up	Up	Down		
3/15-16/21	143	465	208	1362	186	1202	285	168	82	347		
5/26/21	-	-	-	-	-	-	-	-	-	-		
9/8/21	109	436	196	834	140	913	253	138	78	297		
	Prediction Limit = 320.8384											

# pH Monitoring Results (S.U.)

	Monitoring Well											
Date	CCR-2	CCR-3	CCR-4	CCR-5	MW-7	MW-9	MW-12	MW-13	MW-14	OW-2		
	Down	Down	Down	Down/ Boundary	Up	Down	Down	Up	Up	Down		
3/15-16/21	7.38	6.81	6.32	6.17	6.34	4.78	6.53	6.73	4.96	6.71		
5/26/21	7.21	6.57	7.17	6.64	6.59	5.05	6.3	6.87	4.82	6.36		
9/8/21	6.52	6.1	6.37	6.6	6.51	4.56	6	6.71	4.8	5.71		
	Prediction Limit = 3.77 – 9.97											

⁽²⁾ Appendix III constituent not required to be monitored during the annual assessment monitoring event.

⁽²⁾ Constituent not previously detected; therefore, not included in further assessment monitoring.

# Radium 226 and 228 Combined (Ra) Monitoring Results (pCi/L) (1)

	readam 220 and 220 combined (rea) monitoring researce (posts)											
	Monitoring Well											
Date	CCR-2	CCR-3	CCR-4	CCR-5	MW-7	MW-9	MW-12	MW-13	MW-14	OW-2		
	Down	Down	Down	Down/ Boundary	Up	Down	Down	Up	Up	Down		
3/15-16/21	2.454	2.562	1.915	1.696	1.431	1.68	2.12	2.016	1.773	1.037		
5/26/21	2.083	2.235	1.961	2.05	1.967	2.18	2.08	1.994	1.944	2.277		
9/8/21	1.452	1.452	1.452	1.257	1.295	1.82	1.698	1.237	1.388	1.165		
		•	Pred	diction Limit	= X, GWPS =	5 pCi/L						

⁽¹⁾ Per MS Dept. of Health (BJ Smith) and EPA guidance for drinking water standards, Radium 226/228 Combined is calculated by adding Radium 226 and Radium 228 Activity (Act) concentrations together if they are detected above the MDC; otherwise, the MDC is used.