COAL COMBUSTION RESIDUALS (CCR) GROUNDWATER MONITORING AND CORRECTIVE ACTION ANNUAL REPORT

CHOCTAW GENERATION LIMITED PARTNERSHIP, L.L.L.P. 2391 PENSACOLA ROAD ACKERMAN, MS 39735 (662) 387-5758

JANUARY 18, 2023

TABLE OF CONTENTS

1.0	INTR	ODUCTION	1
	1.1 1.2 1.3	Site Description and Regulatory Applicability Annual Report Requirements Professional Engineer Certification	2
2.0	OVE	RVIEW: DETECTION AND ASSESSMENT MONITORING	5
	2.1 2.2	Detection Monitoring Program	
3.0	GRO	UNDWATER MONITORING SYSTEM	8
	3.1 3.2 3.3	Current Groundwater Monitoring System Monitoring Well Installation Monitoring Well Decommissioning	9
4.0	GRO	UNDWATER MONITORING DATA	11
	4.1 4.2 4.3	Sample Requirements	12
5.0	ADDI	ITIONAL INFORMATION	17
	5.1 5.2 5.3	Alternative Monitoring Frequency Demonstration of Invalid Statistically Significant Increase Time Extension for Corrective Measures Assessment	17
6.0	CON	CLUSION	19
	6.1 6.2	Summary of Key Actions Completed	19 19

FIGURES:

Figure 1: Site Location Map Figure 2: Facility Diagram

APPENDICES:

Appendix A: Potentiometric Surface Maps

Appendix B: Analytical Results and Chain-of-Custody Forms

Appendix C: Field Sampling Data

Appendix D: 2022 Groundwater Monitoring Summary

1.0 INTRODUCTION

1.1 SITE DESCRIPTION AND REGULATORY APPLICABILITY

The Choctaw Generation Limited Partnership, LLLP (Choctaw Generation) is located near the City of Ackerman in Choctaw County, Mississippi. Choctaw Generation is in north central Mississippi on a 170-acre site. Choctaw Generation is bounded on the south by Pensacola Road and is located ½ mile west of US Highway 9. Figure 1 shows the location of the site. Choctaw Generation operates a single unit electrical generation facility designed to generate electricity for dispatch to the Tennessee Valley Authority (TVA) electrical system. The primary boiler fuel is lignite coal. As a result of combusting lignite coal, ash is created and must be disposed or re-purposed. Choctaw Generation owns and operates an existing Ash Management Unit (AMU) for the placement and disposal of ash. The AMU (or CCR unit) is located in the northeastern portion of the property and consists of three (3) cells, as shown in Figure 2. The CCR unit encompasses approximately 64 acres of the Choctaw Generation site.

The site is currently regulated by the Mississippi Department of Environmental Quality (MDEQ) Solid Waste Regulations and Solid Waste Permit No. SW0100040462. The site is now also required to comply with the Groundwater Monitoring and Corrective Action requirements of 40 CFR Part 257, Subpart D – Standards for the Disposal of Coal Combustion Residuals (CCR) in Landfills and Surface Impoundments. As an existing CCR landfill, the site was required to be in compliance with the following groundwater monitoring requirements by October 17, 2017:

Install a groundwater monitoring system as required by §257.91;
Develop a groundwater sampling and analysis program to include selection of the statistical procedures to be used for evaluating groundwater monitoring data as required by §257.93;
Initiate the detection monitoring program to include obtaining a minimum of eight (8) independent samples for each background and downgradient well as required by §257.94(b); and
Evaluate groundwater monitoring data for statistically significant increases over background levels for the constituents listed in Appendix III of Subpart D as required by \$257.94

The Choctaw Generation groundwater monitoring system was completed in accordance with the groundwater monitoring performance standards of §257.91 by June 2016. The initial Choctaw Generation CCR unit groundwater monitoring system consisted of three (3) background or upgradient wells and eight (8) downgradient wells. A Groundwater Monitoring Plan was developed in August 2016 in accordance with the groundwater sampling and analysis program requirements of §257.93. The Groundwater Monitoring Plan was updated in January 2019 to address an additional well installed at the site. The current Groundwater Monitoring Plan is available in the Choctaw Generation Operating Record and CCR Web Site. Sampling of the groundwater wells is conducted in accordance with the most current version of the

Groundwater Monitoring Plan. Eight (8) independent samples were collected and analyzed prior to October 17, 2017, initiating the groundwater monitoring program at the site.

Over time, wells have been replaced, added, and removed due to compromised well integrity as well as change in monitoring requirements. These changes are discussed further in Section 3.0. The current Choctaw Generation CCR unit groundwater monitoring system consists of three (3) background or upgradient wells and seven (7) downgradient wells which ensure complete coverage of the CCR unit. A facility diagram showing the monitoring well locations is included as Figure 2.

1.2 ANNUAL REPORT REQUIREMENTS

Choctaw Generation is required to prepare an annual groundwater monitoring and corrective action report (the Annual Report) no later than January 31, 2018, and annually thereafter, and place the report in the Operating Record. The Annual Report is also made available on the CCR Web Site within 30 days of filing the report in the Operating Record. The Annual Report must be maintained in the Operating Record and on the CCR Web Site for at least five (5) years.

Per §257.90(e), the Annual Report must document the status of the groundwater monitoring and corrective action program for the CCR unit, summarize key actions completed, describe any problems encountered, discuss actions to resolve the problems, and project key activities for the upcoming year. At a minimum, the Annual Report must contain the following information, to the extent available:

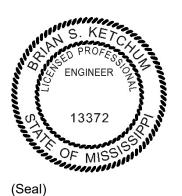
A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit;
Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;
In addition to all the monitoring data obtained under §§257.90 through 257.98, a summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs;
A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels); and
Other information required to be included in the annual report as specified in §§257.90 through 257.98.

- ☐ A section at the beginning of the annual report that provides an overview of the current status of groundwater monitoring and corrective action programs for the CCR unit. At a minimum, the summary must specify all of the following:
 - At the start of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in §257.94 or the assessment monitoring program in §257.95;
 - At the end of the current annual reporting period whether the CCR unit was operating under the detection monitoring program in §257.94 or the assessment monitoring program in §257.95;
 - If it was determined that there was a statistically significant increase over background for one or more constituents listed in Appendix III to the part pursuant to §257.94(e);
 - Identify those constituents listed in Appendix III to this part and the names
 of the monitoring wells associated with such an increase; and
 - Provide the date when the assessment monitoring program was initiated for the CCR unit.
 - If it was determined that there was a statistically significant level above the groundwater protection standard for one or more constituents listed in appendix IV to this part pursuant to §257.95(g) include all of the following:
 - Identify those constituents listed in Appendix IV to this part and the names of the monitoring wells associated with such an increase;
 - Provide the date when the assessment of corrective measures was initiated for the CCR unit;
 - Provide the date when the public meeting was held for the assessment of corrective measures for the CCR unit; and
 - Provide the date when the assessment of corrective measures was completed for the CCR unit.
 - Whether a remedy was selected pursuant to §257.97 during the current annual reporting period, and if so, the date of the remedy selection; and
 - Whether remedial activities were initiated or are ongoing pursuant to §257.98 during the current annual reporting period.

To comply with the requirements above, a map of the CCR unit and all upgradient and downgradient monitoring wells that are part of the current groundwater monitoring system are shown on Figure 2. Section 2 contains an overview and discussion of the status and any transition between monitoring programs (i.e., detection monitoring versus assessment monitoring) and the reason such monitoring program is in place. A discussion of the current monitoring well system and any monitoring wells installed or decommissioned is provided in Section 3.0. A summary of the monitoring data obtained during the annual reporting period is provided in Section 4.0. Section 5.0 presents additional information required by §§257.90 through 257.98 to be included in the Annual Report and which is not already addressed in the prior sections. Finally, Section 6.0 summarized actions completed during the reporting year and projects key activities planned for the following reporting year.

1.3 PROFESSIONAL ENGINEER CERTIFICATION

The undersigned Registered Professional Engineer is familiar with the requirements of 40 CFR Part 257, Subpart D and certifies that the Groundwater Monitoring and Corrective Action Annual Report was prepared under his/her direct supervision, in accordance with the requirements of 40 CFR 257.90 through 257.98. The undersigned Registered Professional Engineer certifies under penalty of the law that all information and statements provided in this report (including attachments), based on information and belief formed after reasonable inquiry, are true, accurate, and complete.


Brian S. Ketchum, PE

Registration Number: 13372

State of Mississippi

1/18/2023

Date Signed

2.0 OVERVIEW: DETECTION AND ASSESSMENT MONITORING

Choctaw Generation began the reporting year and is currently subject to the Assessment Monitoring Program requirements of §257.95, and groundwater monitoring as required by this program is discussed in Section 4.0. If was previously determined that there was a statistically significant increase over background for more than one constituent listed in Appendix III (e.g., Chloride, Sulfate, and TDS). A description of both the Detection Monitoring Program and Assessment Monitoring Program is provided below and includes a history of the monitoring as well any changes that occurred during the previous calendar year. It was determined in 2018 that there was a statistically significant level above the groundwater protection standard (GWPS) for lithium in monitoring wells CCR-3 and MW-9, cobalt in monitoring wells MW-9, MW-12, and MW-15, and later beryllium in MW-9. A review of the monitoring data suggested that the detection of lithium, cobalt, and beryllium above the GWPS could have been from an alternate source rather than a potential release of the CCR unit resulting in an Alternate Source Demonstration (ASD) being completed in December 2019. Therefore, the site continues in assessment monitoring.

2.1 DETECTION MONITORING PROGRAM

For existing CCR landfills, including the Choctaw Generation AMU, a minimum of eight (8) independent samples from each background and downgradient well must be collected and analyzed for the constituents listed in Appendix III and Appendix IV of 40 CFR 257, Subpart D by no later than October 17, 2017. These constituents are listed in Tables 4-1 and 4-2. After the eight (8) initial sampling events are completed to develop background data, the detection monitoring must be performed on a semiannual basis during the active life of the CCR unit and the post-closure period unless assessment monitoring is triggered.

In accordance with the requirements of the Detection Monitoring Program in §257.94(b), one (1) sample from each background (or upgradient) and downgradient well was analyzed for the seven (7) parameters in Appendix III on February 6-7, 2018. An evaluation of these results indicated statistically significant increases (SSI) above the prediction limits established during background monitoring for the following parameters in the associated wells: chloride (MW-9, MW-12, and MW-16), fluoride (MW-9 and OW-2), sulfate (CCR-3, MW-9, MW-12, MW-16, and OW-2), and TDS (CCR-3, MW-9, and MW-16). Therefore, the requirements of the Assessment Monitoring Program were triggered.

2.2 ASSESSMENT MONITORING PROGRAM

Due to SSI exceedances determined during the initial detection monitoring event of February 6-7, 2018, Choctaw Generation triggered the Assessment Monitoring Program under §257.95. Choctaw Generation conducted the initial annual assessment monitoring event on May 15-16, 2018, for all Appendix IV constituents. Choctaw Generation then conducted the first semiannual assessment monitoring event on

September 10-11, 2018, and the subsequent semiannual assessment monitoring event on March 19-20, 2019, for all Appendix III constituents and the ten (10) Appendix IV constituents previously detected during the annual Appendix IV monitoring event. The subsequent annual monitoring for all Appendix IV constituents was conducted again on May 29-30, 2019. Based on the sampling results, twelve (12) Appendix IV constituents were detected, adding selenium and molybdenum to the Appendix IV constituents to be monitored during semiannual assessment monitoring events. The next two (2) semiannual assessment monitoring events were conducted on September 10-11, 2019, and March 25-26, 2020. These events included sampling for all Appendix III constituents and those Appendix IV constituents detected during the 2019 annual monitoring event. The next annual monitoring for all Appendix IV constituents was conducted on May 18, 2020, in which no new Appendix IV constituents were detected requiring no new constituents to be sampled in subsequent semiannual assessment monitoring events. The next two (2) semiannual assessment monitoring events were conducted on September 28, 2020, and March 15-16, 2021. These events included sampling for all Appendix III constituents and those Appendix IV constituents detected during previous annual monitoring events. The next annual monitoring for all Appendix IV constituents was conducted on May 26, 2021, and again no new Appendix IV constituents were detected requiring no new constituents to be sampled in subsequent semiannual assessment monitoring events. The semiannual assessment monitoring events occurred on September 8, 2021, and March 23-24, 2022. Although the 2021 annual monitoring event is required to include Appendix IV constituents only, the laboratory analyzed the samples for boron and calcium (Appendix III) in addition to all Appendix IV constituents. Therefore, these results are included as part of this annual report. The next annual monitoring event was conducted on May 31, 2022, and no new Appendix IV constituents were detected requiring no new constituents to be monitored during subsequent semiannual monitoring events. The next semiannual event occurred on September 12-13, 2022, and the follow up semiannual event is planned for March 2023. All current Appendix IV constituents that are sampled during the semiannual assessment monitoring events are listed in Section 4.3.

If the concentrations of all constituents listed in Appendix III and Appendix IV are shown to be at or below background concentrations for two consecutive monitoring events, Choctaw Generation may return to detection monitoring. If the concentration of any Appendix III or IV constituent is verified to be above the background values, but all concentrations are below the GWPS, Choctaw Generation must continue assessment monitoring. If one or more Appendix IV constituents are detected at a statistically significant level (SSL) above the GWPS in any monitoring event, Choctaw Generation must implement correction actions. GWPS for all constituents detected during the initial and subsequent assessment monitoring events were established per the procedures in §257.95(h). The Appendix III and Appendix IV results from the sampling conducted during the reporting period, the background concentrations (or "prediction limits") established under §257.94(b), and the GWPS established under §257.95(d)(2) are included as Appendix D of the Annual Report.

Due to a verified statistically significant increase (SSI) of Appendix IV constituents above the GWPS (lithium in monitoring wells CCR-3 and MW-9 and cobalt in monitoring wells MW-9, MW-12, and MW-15), Choctaw Generation initiated an assessment of corrective measures on January 30, 2019. The Assessment of Corrective Measures (ACM) Report was completed on June 29, 2019, after a 60-day extension.

After review of the monitoring analytical data from the 2019 period, trends in groundwater concentration led to the prospect that the detection of lithium, cobalt, beryllium (not verified), and molybdenum (not verified) at a SSL above the GWPS could have been from an alternate source rather than a potential release of the CCR unit or associated AMU basin. As discussed in Section 5.2, An ASD was then successfully completed on December 17, 2019, providing an evidential conclusion that cobalt and lithium detected at SSLs were a result of an alternate source. Due to the successful ASD, Choctaw Generation immediately ceased and discontinued corrective measure activities and continued assessment monitoring. Beryllium was then detected at a SSL above the GWPS in MW-9 during the 2020 annual assessment monitoring event and verified in the second semiannual assessment monitoring event on September 28, 2020. After research and review of analytical data, the ASD was then revised on August 20, 2020, to successfully address beryllium. Therefore, Choctaw Generation has continued in assessment monitoring.

3.0 GROUNDWATER MONITORING SYSTEM

3.1 CURRENT GROUNDWATER MONITORING SYSTEM

The owner or operator of a CCR unit must install a groundwater monitoring system that consists of a sufficient number of wells, installed at appropriate locations and depths, to yield groundwater samples from the uppermost aquifer. The system should accurately represent the quality of background groundwater that has not been affected by leakage from a CCR unit (i.e., upgradient wells). In addition, the system should accurately represent the quality of groundwater passing the waste boundary of the CCR unit (i.e., downgradient wells). The downgradient wells should be installed at the waste boundary to ensure detection of groundwater contamination in the uppermost aquifer. The number, spacing, and depths of groundwater monitoring wells within the system were determined based upon site-specific technical information that included an assessment of items such as:

	Aquifer	thickness	and	groundwater	flow	direction;	and
--	---------	-----------	-----	-------------	------	------------	-----

□ Saturated and unsaturated geologic units and fill materials overlying the uppermost aquifer, materials comprising the uppermost aquifer, and materials comprising the confining unit defining the lower boundary of the uppermost aquifer, including, but not limited to, thicknesses, stratigraphy, lithology, hydraulic conductivities, porosities and effective porosities.

The groundwater monitoring system must include a minimum number of monitoring wells necessary to meet the performance standards and information specified above. The direction of groundwater flow through the CCR unit is to the north-northwest, which has been consistently determined through ongoing solid waste permit groundwater monitoring events. The locations for the monitoring wells were based upon the known direction of groundwater movement. The monitoring wells screen the uppermost laterally continuous aquifer below the base of ash fill. The base of ash fill is at an approximate elevation of 480 feet mean sea level (msl). The zone is screened and monitored at an approximate elevation of 470 feet msl, but varies across the site and through the unit.

The system must contain a minimum of at least one (1) upgradient and three (3) downgradient monitoring wells. The initial Choctaw Generation CCR unit groundwater monitoring system consisted of three (3) background or upgradient wells and eight (8) downgradient wells to ensure complete coverage of the CCR unit, which consists of three (3) ash disposal cells covering approximately 64 acres. An additional downgradient well was added in August 2018 (CCR-5) and three more downgradient wells were installed in May 2019 (i.e., CCR-6, CCR-7, and CCR-8). Additionally, one downgradient well (MW-16) was replaced in May 2019 by MW-17 due to subsidence of the surface soils, which compromised the well integrity. In 2020, MW-15 and MW-17 were removed due to compromised well integrity and the wells located on the mine (i.e., CCR-6, CCR-7, and CCR-8) were removed from the current groundwater system as they are no longer needed for delineation in response to corrective measure requirements. As a result, the current

CCR unit groundwater monitoring system consists of three (3) background or upgradient wells and seven (7) downgradient wells. A map showing the monitoring well locations is included as Figure 2, and a summary of the current wells is included as Table 3-1 below. Monitoring wells were installed according to the guidelines established in the 1994 USEPA Region IV RCRA Subtitle D Training Manual (SDTM, 1994), or other generally accepted guidelines, and are believed to meet the requirements of 40 CFR Part 257, Subpart D. For more detailed procedures related to the installation of the current groundwater monitoring system, refer to the CCR Groundwater Monitoring Plan available in the facility Operating Record and CCR Web Site.

Table 3-1: Groundwater Monitoring Wells

Well No.	Background or Down-gradient	Elevation* (ft)	Well Depth (ft)	Well Dia. (inches)
CCR-2	Downgradient	542.50	84.50	4
CCR-3	Downgradient	504.78	53.00	4
CCR-4	Downgradient	505.68	53.00	4
CCR-5	Downgradient	470.46	34.55	4
MW-7	Background (Upgradient)	571.76	56.92	4
MW-9	Downgradient	480.04	21.74	4
MW-12	Downgradient	474.19	19.09	4
MW-13	Background (Upgradient)	584.48	106.00	4
MW-14	Background (Upgradient)	593.84	60.97	4
OW-2	Downgradient	489.40	27.05	4

^{*}Elevations were re-surveyed on November 14, 2019. Updated elevations will be used to determine groundwater elevation in subsequent monitoring events.

Sections 3.2 and 3.3 discuss changes to the groundwater monitoring system that took place during the reporting period.

3.2 MONITORING WELL INSTALLATION

There were no new wells installed in 2022.

3.3 MONITORING WELL DECOMMISSIONING

Monitoring wells must be maintained and appropriately cased in a manner that maintains the integrity of the monitoring well borehole throughout the life of the monitoring program. As noted in Section 3.1, the integrity of downgradient wells MW-15 and MW-17 were compromised during the 2020 period. The monitoring well plug and abandonment project for these wells was then conducted on August 26, 2021, in accordance with the Mississippi water well plugging guidelines, and the well abandonment/

decommissioning for decommissioned in	submitted	to	MDEQ	on	August	30,	2021.	No	monitoring	wells	were

4.0 GROUNDWATER MONITORING DATA

4.1 SAMPLING REQUIREMENTS

The monitoring well samples collected for laboratory analysis along with the duplicate samples and field blanks were submitted to Micro-Methods Laboratories in Ocean Springs, Mississippi. Sampling was conducted in accordance with the CCR Groundwater Monitoring Plan. The samples were analyzed for constituents listed in Appendix III and/or Appendix IV of 40 CFR 257, Subpart D (depending on the type of monitoring event) as listed in Tables 4-1 and 4-2 below. Metals were analyzed as total recoverable metals from unfiltered samples.

Table 4-1: Appendix III Constituents

table 4-1. Appendix in Constituents										
40 CFR 257, Subpar	40 CFR 257, Subpart D, Appendix III									
Parameter	Analytical Method	С	ontainer	Preservative	Holding Time					
Boron	200.7	Р	500mL	NA	6 months					
Calcium	200.7	Р	500mL	NA	6 months					
Chloride	4110B	Р	1000mL	NA	28 days					
Fluoride	4500-F-C	P 1000mL		NA	28 days					
pН		Meas	ured and monitor	red in the field.						
Sulfate	4110B	Р	1000mL	NA	28 days					
TDS	2540C	Р	1000mL	NA	7 days					

Table 4-2: Appendix IV Constituents

40 CFR 257, Subpart D, Appendix IV									
Parameter	Analytical Method	Co	ontainer	Holding Time					
Antimony	200.8	Р	500mL	NA	6 months				
Arsenic	200.8	Р	500mL	NA	6 months				
Barium	200.7	Р	500mL	NA	6 months				
Beryllium	200.8	Р	500mL	NA	6 months				
Cadmium	200.8	Р	500mL	NA	6 months				
Chromium	200.8	Р	500mL	NA	6 months				
Cobalt	200.8	Р	500mL	NA	6 months				
Fluoride	4500-F-C	Р	1000mL	NA	28 days				
Lead	200.8	Р	500mL	NA	6 months				
Lithium	200.7	Р	500mL	NA	6 months				
Mercury	245.1	Р	500mL	NA	28 days				
Molybdenum	200.8	Р	500mL	NA	6 months				
Selenium	200.8	Р	500mL	NA	6 months				

40 CFR 257, Subpart D, Appendix IV									
Parameter	Analytical Method	Co	ntainer	Preservative	Holding Time				
Thallium	200.8	Р	500mL	NA	6 months				
Radium 226/228	903.1 / 904.0	Р	1000mL	NA	NA				

T = Teflon, P = Plastic, G = Glass, NA = Not Applicable

4.2 GROUNDWATER ELEVATION AND FLOW

Groundwater elevation is measured in each monitoring well immediately prior to purging each time groundwater is sampled. Table 4-3 provides a summary of the groundwater elevation recorded for each well during each of the monitoring events. A potentiometric surface map was developed for each monitoring event based on the measured static water levels and the top-of-case (TOC) elevations. Also, the rate of groundwater flow is determined for each event and the direction of flow is summarized in the table and provided on the potentiometric surface maps included in Appendix A. Groundwater flow velocity (v) is estimated using the hydraulic conductivity (K) of the groundwater zone, the effective porosity (η_e), and the hydraulic gradient (dh/dl). The groundwater flow velocity in feet/year is estimated using the following

equation:
$$v = \frac{K}{\eta_e} \left(\frac{dh}{dl} \right)$$
.

Conductivity and porosity are dependent on the soil type in the saturated zone. Based on boring logs, the soils in the screened saturated zone are predominantly silt, clay, and silty-clay units. These Clayey Wilcox sediments were investigated and found to have hydraulic conductivities generally less than 1.0 x 10⁻⁶ cm/sec, and in many cases 1.0 x 10⁻⁸ cm/sec or less, as noted in the Special/Industrial Waste Permit Application prepared by Malcolm Pirnie (March 1998). As a conservative measure of groundwater flow the highest permeability measured at the site of 2.0 x 10⁻⁵ cm/sec has been used. An effective porosity of 0.44 was used based on a mix of silty clay and clay of varying plasticity found in the saturated zone. Previously, the hydraulic gradient was determined for each monitoring event using the difference in groundwater elevations at upgradient monitoring well, MW-14, and downgradient monitoring well, MW-15, which are approximately 3,025 feet apart. Since the integrity of the downgradient well, MW-15, was compromised, the hydraulic gradient is now determined for each monitoring event using an average of the difference in groundwater elevations at upgradient well, MW-14, and downgradient monitoring well, CCR-2, which are approximately 1,800 feet apart, and of the difference in groundwater elevations at upgradient well, MW-13, and downgradient monitoring well, CCR-4, which are approximately 1,860 feet apart.

As noted in Table 4-3 and from the potentiometric surface maps (provided in Appendix A), groundwater in the vicinity of the CCR unit flows north-northwest. Also, as noted during the background sampling period, groundwater elevation changed very little in each monitoring well sampled during the 2022 reporting period, indicating that seasonal variability does not significantly impact groundwater at the site. Groundwater flow

is relatively slow due to the low hydraulic conductivity of the soils and was calculated to be 1.5 feet per year

based on the 2022 data. This is consistent with the flows calculated for previous monitoring events, as

shown in Table 4-3.

4.3 **GROUNDWATER SAMPLING RESULTS**

The analytical results from the collected samples, the chain-of-custody, and the laboratory quality

assurance and quality control (QA/QC) information are provided in Appendix B. In addition to the

groundwater samples taken from each of the monitoring wells, a duplicate sample and field blank were

collected and analyzed for the required constituents. Temperature, pH, conductivity, turbidity, purge

volume, and elapsed purge time were monitored while purging each well. The field data collected while

purging and sampling each well using the low stress purging and sampling methodology is included in

Appendix C. The data includes monitored field parameters (pH, temperature, turbidity, conductivity), water

levels, well depth, drawdown, purge rate, purge volume, and purge time.

The summary of results for sampling conducted during the reporting year is available in Appendix D. For

those constituents not detected during a given monitoring event, the value is indicated as "less than" (or <)

the minimum reporting level (MRL). Results from the upgradient wells were used to establish the

background groundwater quality for each constituent, which is the interwell prediction limit determined using

the approved statistical procedures. Because statistically significant increases (SSI) of constituents were

verified during the initial detection monitoring event in 2018, GWPS were established per the requirements

of §257.95(d)(2) for Appendix IV constituents and are compared to current and future sampling results.

Semiannual assessment monitoring was conducted on March 23-24, 2022. During this event, all Appendix

III constituents and those Appendix IV constituents previously detected were analyzed. The following

Appendix IV constituents exceeded the GWPS at the well locations noted below for this monitoring event:

Cobalt: CCR-2, CCR-3, CCR-5, and MW-9

Lithium: CCR-3, OW-2, and MW-9

The annual monitoring for all Appendix IV constituents, required by §257.95(b), was conducted May 31 -

June 01, 2022. The following Appendix IV constituents will be monitored during the next two semiannual

assessment monitoring events:

Antimony

Arsenic

Barium

Beryllium

Cadmium

Chromium

Cobalt

Fluoride

Lead

Lithium

Molybdenum

Selenium

Radium 226 and 228 combined

Additionally, the results from this annual event were compared to the GWPS. The following Appendix IV constituents exceeded the GWPS at the well locations noted below for this monitoring event:

Beryllium: MW-9

Cobalt: CCR-2, CCR-3, MW-9, and MW-12

• Lithium: CCR-3 and MW-9

The next semiannual assessment monitoring event was conducted on September 12-13, 2022. The following Appendix IV constituents exceeded the GWPS at the well locations noted below for this monitoring event:

Cobalt: CCR-2, CCR-3, and MW-9

• Lithium: CCR-3, CCR-5, MW-9, and OW-2

Lithium, cobalt, and beryllium were determined to be from an alternate source rather than a potential release of the AMU basin. The ASD is discussed in Section 5.2, and Choctaw Generation has continued assessment monitoring. A summary of the results from each monitoring event (annual and semiannual) is provided in Appendix D, and the full laboratory analytical reports are provided as Appendix B.

Table 4-3: Groundwater Elevation (feet) and Flow Rate (feet/yr)

Date	CCR-2	CCR-3	CCR-4	CCR-5	CCR-6	CCR-7	CCR-8	MW-7	MW-9	MW-12	MW-13	MW-14	MW-15	MW-16	MW-17	OW-2	Flow Rate	Flow Direction
	Background Monitoring																	
7/26-27/16	488.60	473.59	478.46					538.60	471.49	466.92	499.10	564.91	477.50	480.26		476.80	1.4	NNW
8/22-23/16	488.63	473.33	478.41					538.03	471.74	466.97	498.85	563.94	477.19	480.49		476.50	1.3	NNW
9/12-13/16	488.22	472.96	478.36					538.02	470.97	466.09	498.82	563.12	476.74	480.15		476.20	1.3	NNW
10/17-18/16	488.05	472.69	478.61					537.93	471.17	465.56	498.48	560.56	476.19	479.24		476.00	1.3	NNW
11/9-10/16	487.69	472.41	478.16					537.52	471.32	465.45	497.83	559.08	475.78	479.10		475.50	1.3	NNW
11/28-29/16	487.55	472.38	478.17					536.13	471.47	465.97	497.60	560.51	476.16	479.61		475.64	1.3	NNW
2/8-9/17	488.17	474.06	478.95					537.95	473.34	471.27	498.21	563.49	478.87	481.70		477.60	1.3	NNW
3/29-30/17	488.36	474.82	478.81					537.74	472.44	470.17	498.58	565.88	478.83	486.60		477.40	1.4	NNW
	Detection Monitoring																	
2/6-7/18	489.83	475.11	478.84					537.58	473.60	471.47	499.40	562.15	478.92	481.87		477.49	1.3	NNW
								Asses	sment Mo	nitoring								
5/15-16/18	489.73	476.19	478.98					538.66	472.82	468.07	501.08	566.41	478.93	481.36		478.19	1.4	NNW
9/10-11/18	488.34	473.95	478.28	460.73				537.84	472.98	468.60	499.16	562.19	477.16	480.72		476.59	1.3	NNW
3/19-20/19 ⁽¹⁾	491.92	479.69	481.38	463.41				538.06	482.28	470.24	521.24	565.69	480.70	NS		478.80	1.3	NNW
5/29-30/19(1)	491.62	478.76	480.84	462.75	459.91	487.14	462.79	538.47	471.56	466.67	521.42	565.63	480.20	NS	478.65	478.98	1.3	NNW
9/10-11/19 ⁽¹⁾	491.28	479.91	480.43	462.02	458.71	487.01	462.04	538.35	470.61	466.33	521.15	565.16	478.83	NS	477.73	477.57	1.3	NNW
3/25-26/20(2)	493.83	479.8	481.27	463.93	NS	NS	NS	541.78	472.53	470.5	525.6	565.94	NS	NS	479.84	479.48	1.5	NNW
5/18/20(2)	491.75	477.25	480.78	463.05	NS	NS	NS	538.71	471.23	468.88	526.48	565.59	NS	NS	480.64	479.36	1.5	NNW
9/28/20(2)	493.95	478	480.41	463.57	NS	NS	NS	537.85	471.24	468.51	525.58	565.01	NS	NS	NS	478.59	1.5	NNW
3/15-16/21 ⁽²⁾	494.5	479.93	480.78	463.1	NS	NS	NS	537.61	471.54	469.19	525.68	565.52	NS	NS	NS	479.05	1.5	NNW
5/26/21(2)	494.45	479.28	479.9	462.75	NS	NS	NS	537.56	471.32	467.29	526.34	565.12	NS	NS	NS	478.94	1.5	NNW
9/8/21(2)	494.35	479.58	480.83	464.45	NS	NS	NS	536.84	472.46	468.89	525.55	565.33	NS	NS	NS	478.9	1.5	NNW
3/23-24/22(2)	493.62	480.36	480.95	463.71	NS	NS	NS	537.71	473.15	470.49	523.34	565.22	NS	NS	NS	479.51	1.5	NNW
5/31-6/1/22 ⁽²⁾	493.24	478.74	480.15	462.73	NS	NS	NS	537.68	471.39	466.44	523.40	564.88	NS	NS	NS	478.72	1.5	NNW
9/12-13/22(2)	492.25	477.81	480.12	463.15	NS	NS	NS	537.18	472.05	469.51	521.78	563.38	NS	NS	NS	478.43	1.5	NNW

(1) (2)	TOC elevations were resurveyed on November 14, 2019 and groundwater elevations were revised using the correct TOC elevations. Flow rate calculated using an average hydraulic gradient between MW-14 and CCR-2 as well as MW-13 and CCR-4.
	OCCO COD Assessed Description

5.0 ADDITIONAL INFORMATION

5.1 ALTERNATIVE MONITORING FREQUENCY

Based on the availability of groundwater, an alternative monitoring frequency may be proposed under both the detection monitoring program and the assessment monitoring program per §§257.94(d) and 257.95(c), respectively. In lieu of semiannual sampling, sampling may be conducted less frequently but no less than annually. Choctaw Generation must obtain a certification from a qualified professional engineer stating that the demonstration for an alternative groundwater sampling and analysis frequency meets the requirements of §§257.94(d) or 257.95(c). Choctaw Generation must include the demonstration providing the basis for the alternative monitoring frequency and the certification by a qualified professional engineer in the Annual Report. With this Annual Report, Choctaw Generation is not making an alternative monitoring frequency demonstration.

5.2 DEMONSTRATION OF INVALID STATISTICALLY SIGNIFICANT INCREASE

Within 90 days of finding that any of the Appendix III or IV constituents have been detected at a statistically significant level, Choctaw Generation may demonstrate that a source other than the CCR unit caused the contamination or that the statistically significant increase resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Such demonstration is allowed by both the detection monitoring program and assessment monitoring program per §257.94(e)(2) and §257.95(g)(3), respectively. Any such demonstration must be supported by a report that includes the factual or evidentiary basis for any conclusions and must be certified to be accurate by a qualified professional engineer. If a successful demonstration is made, Choctaw Generation must continue monitoring in accordance with the detection or assessment monitoring program, as applicable. Choctaw Generation must also include the demonstration in the Annual Report, as well as the certification by a qualified professional engineer. With this Annual Report, Choctaw Generation is not demonstrating that any additional constituents were detected at a SSL above the GWPS as a result from an alternate source. A history of the ASD is provided below.

Sampling to evaluate the composition of the natural soil at the site was conducted on October 29, 2019, which included drilling soil borings in three (3) locations at the Choctaw Generation site. The samples were collected at a variety of depths ranging from four (4) to twenty (20) feet to capture the natural, differing geologies in the soil and material near and within the monitored aquifer. Based on review of the analytical results, the initial ASD was developed and certified on December 17, 2019, demonstrating that elevated lithium and cobalt concentrations above each GWPS were a result of natural variation in the groundwater quality as a result of the aquifer material rather than a potential release from the CCR unit. Beryllium was then detected above the GWPS in March 2020 and then verified in the following event in May of 2020. In response, the ASD was revised and certified on August 20, 2020, demonstrating that the elevated beryllium

concentration detected above the GWPS was a result of natural variation in the groundwater quality as a result of the aquifer material rather than a potential release from the CCR unit. The initial and revised ASD were submitted with each respective annual report and can be found in the Choctaw Generation Operating Record and on the CCR Website.

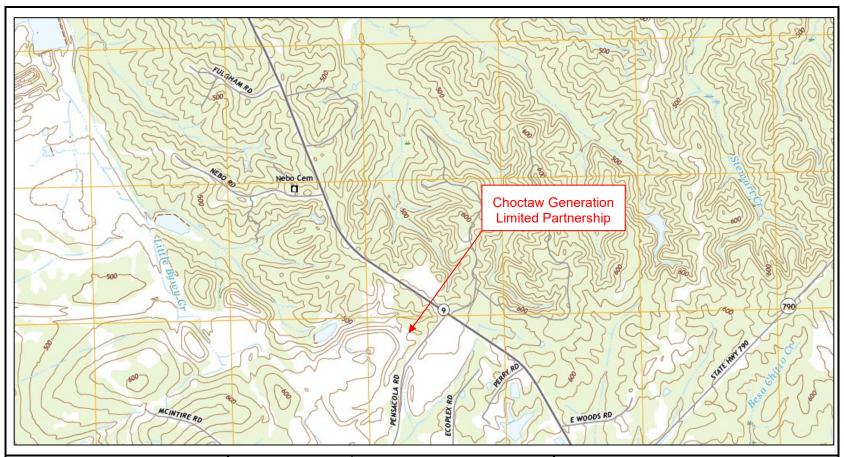
It should be noted, the molybdenum exceedance was never confirmed or verified upon resampling events; therefore, molybdenum is not believed to have exceeded the GWPS. As a result of the successful revised ASD, Choctaw Generation has continued in assessment monitoring.

5.3 TIME EXTENSION FOR CORRECTIVE MEASURES ASSESSMENT

An assessment of corrective measures must be completed within 90 days of finding any Appendix IV constituent has been detected at a statistically significant level exceeding the GWPS. A demonstration of need for up to an additional 60 days to complete this assessment may be made as a result of site-specific conditions or circumstances. Certification from a qualified professional engineer attesting that this demonstration is accurate must be provided, and both the demonstration and certification must be included in the Annual Report. With this Annual Report, Choctaw Generation is not requesting additional time to assess corrective measures, since such assessment was not required during the period covered by the report.

6.0 CONCLUSION

6.1 SUMMARY OF KEY ACTIONS COMPLETED


During the reporting period, two semiannual assessment monitoring events were conducted, revealing continued exceedances of the GWPS for cobalt, lithium, and beryllium. These constituent exceedances are detailed in the ASD. There were no new exceedances of the GWPS; therefore, assessment monitoring was continued.

6.2 KEY ACTIVITIES FOR UPCOMING YEAR

During calendar year 2023, Choctaw Generation anticipates conducting at least two (2) semiannual monitoring events and an annual Appendix IV monitoring event in accordance with the assessment monitoring program as outlined by §257.95(g). If any constituent, other than those addressed by the revised ASD, is detected at an SSL above the GWPS, the ASD will be amended or corrective measures will be initiated to address the constituents of concern.

FIGURE 1

SITE LOCATION MAP

Legend:

Source: USGS US Topo (12/30/2020)

Drawn By: JEE	Checked By: BSK
Date: 1/12/2023	Scale: 1:24,000

Project No.:

Drawing No: N/A

Choctaw Generation Limited Partnership 2391 Pensacola Road Ackerman, Mississippi

P.O. Box 356 Sherman, Mississippi 38869 (662) 840-5945

Figure 1: Site Location Map

FIGURE 2

FACILITY DIAGRAM

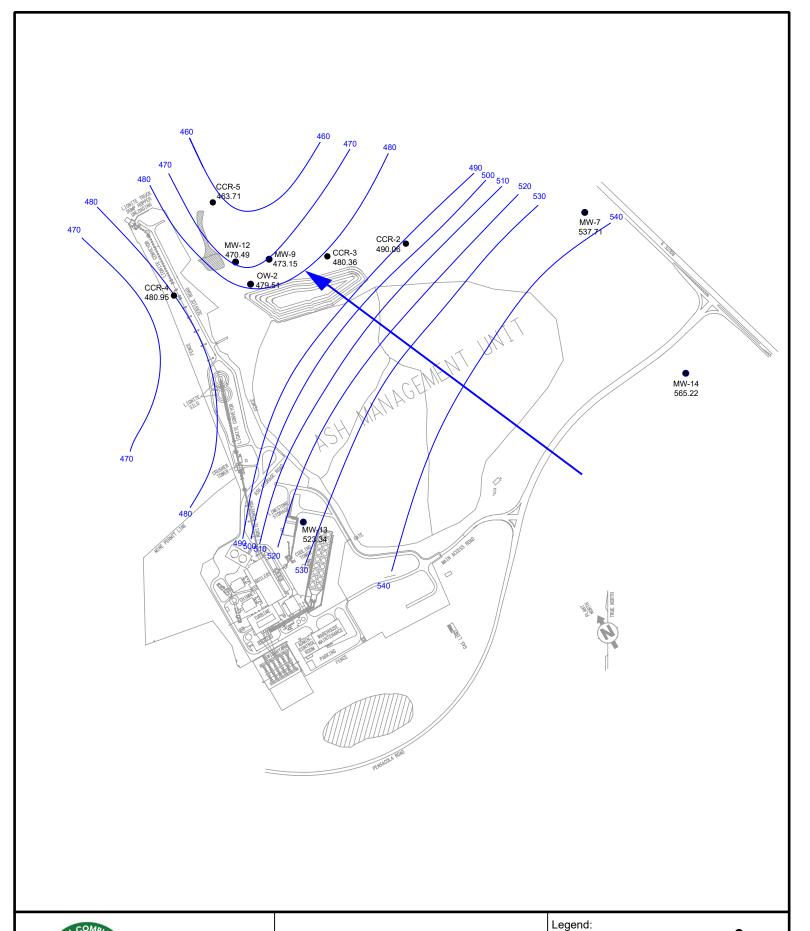
P.O. Box 356 Sherman, MS 38869 (662) 840-5945

Choctaw Generation Limited Partnership, L.L.L.P. 2391 Pensacola Road Ackerman, Mississippi

Legend:
Monitoring Well

MW-14
E=593.84

Facility Diagram


Figure 2

Project No.:

Scale: Not Determined
Drawn By: JTB
Date: 8/27/2018 Revised By: JEE Date: 1/20/2023

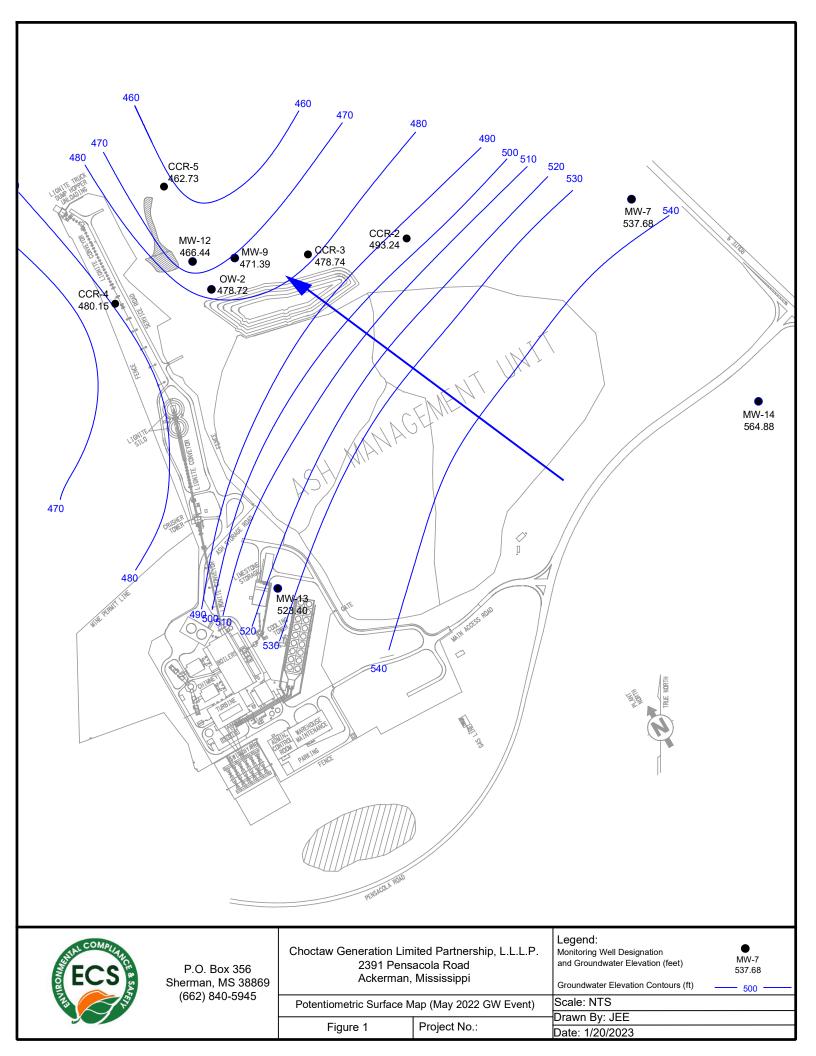
APPENDIX A

POTENTIOMETRIC SURFACE MAPS

P.O. Box 356 Sherman, MS 38869 (662) 840-5945

Choctaw Generation Limited Partnership, L.L.L.P. 2391 Pensacola Road Ackerman, Mississippi

Monitoring Well Designation and Groundwater Elevation (feet)


Groundwater Elevation Contours (ft)

MW-7 537.71 500

Potentiometric Surface Map (March 2022 GW Event)

Scale: NTS Drawn By: JEE Date: 1/20/2023

Figure 1 Project No.:

APPENDIX B

ANALYTICAL RESULTS AND CHAIN-OF-CUSTODY FORMS

Mailing Address: PO Box 1410 Ocean Springs, MS 39566-1410 6500 Sunplex Drive Ocean Springs, MS 39564 228.875.6420 Phone 228.875.6423 Fax

April 27, 2022

Jim Ward Work Order #: 2203470

Choctaw Generation LP

Purchase Order #: RDH16277 - Yr 2022

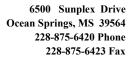
2391 Pensacola Rd.

Ackerman, MS 39735

RE: CGLP CCR Semi Annual

Enclosed are Micro-Methods Laboratory, Inc. results of analyses performed on samples received 03/25/2022 08:58. If you have any questions concerning this report, please feel free to contact the office.

Sincerely,

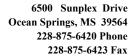

Mitch Spicer

Lab Director *Micro-Methods Laboratory, Inc.*

DISCLAIMER

The results only relate to the items or the sample and/or samples received by the laboratory. This report shall not be reproduced except in full, without the approval of the laboratory. All NELAP certified test methods performed meet the requirements of NELAC 2009 Standards. Any variances and/or deviations specific to this analytical report are referenced in the lab report using qualifiers and detailed explanations found in the case narrative.

Choctaw Generation LP 2391 Pensacola Rd. Ackerman MS, 39735


Project: CGLP CCR Semi Annual

Project Number: [none]
Project Manager: Jim Ward

Reported: 04/27/2022 10:15

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date/Time Sampled	Sampled by	Date/Time Received
MW-9	2203470-01	Water	03/23/2022 14:35	Kirk Shelton	03/25/2022 08:58
OW-2	2203470-02	Water	03/23/2022 11:20	Kirk Shelton	03/25/2022 08:58
MW-13	2203470-03	Water	03/24/2022 11:10	Kirk Shelton	03/25/2022 08:58
MW-7	2203470-04	Water	03/24/2022 15:20	Kirk Shelton	03/25/2022 08:58
MW-14	2203470-05	Water	03/24/2022 13:44	Kirk Shelton	03/25/2022 08:58
Field Blank	2203470-06	Water	03/24/2022 13:54	Kirk Shelton	03/25/2022 08:58
Duplicate	2203470-07	Water	03/23/2022 00:00	Kirk Shelton	03/25/2022 08:58
MW-12	2203470-08	Water	03/23/2022 10:58	Kirk Shelton	03/25/2022 08:58
CCR-2	2203470-09	Water	03/23/2022 13:32	Kirk Shelton	03/25/2022 08:58
CCR-3	2203470-10	Water	03/23/2022 15:52	Kirk Shelton	03/25/2022 08:58
CCR-4	2203470-11	Water	03/23/2022 16:55	Kirk Shelton	03/25/2022 08:58
CCR-5	2203470-12	Water	03/24/2022 12:17	Kirk Shelton	03/25/2022 08:58

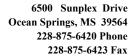
Choctaw Generation LP Project: CGLP CCR Semi Annual

 2391 Pensacola Rd.
 Project Number: [none]
 Reported:

 Ackerman MS, 39735
 Project Manager: Jim Ward
 04/27/2022 10:15

Sample Receipt Conditions

Date/Time Received: 3/25/2022 8:58:00AM Shipped by: Fed Ex

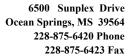

Received by: Sarah E. Tomek Submitted by: Kirk Shelton

Date/Time Logged: 3/25/2022 9:35:00AM Logged by: Sarah E. Tomek

Cooler ID: #324 Receipt Temperature: 0.4 °C

Yes Cooler Custody Seals Present Yes Received on Ice but Not Frozen Containers Intact Yes No Ice, Short Trip No COC/Labels Agree Yes **Obvious Contamination** No Labels Complete Rush to meet HT Yes No COC Complete Yes Received within HT Yes Volatile Vial Headspace >6mm Proper Containers for Analysis No Yes Field Sheet/Instructions Included Correct Preservation No Yes Samples Rejected/Documented in Log No Adequate Sample for Analysis Yes Temp Taken From Temp Blank Yes Sample Custody Seals Present Yes Temp Taken From Sample Container Samples Missing from COC/Cooler No No

Temp Taken From Cooler No
COC meets acceptance criteria Yes



Choctaw Generation LP Project: CGLP CCR Semi Annual

2391 Pensacola Rd. Project Number: [none] Reported:
Ackerman MS, 39735 Project Manager: Jim Ward 04/27/2022 10:15

Cooler ID: #400	_	Receipt Temperature: 0.1 °C	
Cooler Custody Seals Present	Yes	Received on Ice but Not Frozen	Yes
Containers Intact	Yes	No Ice, Short Trip	No
COC/Labels Agree	Yes	Obvious Contamination	No
Labels Complete	Yes	Rush to meet HT	No
COC Complete	Yes	Received within HT	Yes
Volatile Vial Headspace >6mm	No	Proper Containers for Analysis	Yes
Field Sheet/Instructions Included	No	Correct Preservation	Yes
Samples Rejected/Documented in Log	No	Adequate Sample for Analysis	Yes
Temp Taken From Temp Blank	Yes	Sample Custody Seals Present	Yes
Temp Taken From Sample Container	No	Samples Missing from COC/Cooler	No
Temp Taken From Cooler	No		
COC meets acceptance criteria	Yes		

Choctaw Generation LP Project: CGLP CCR Semi Annual

2391 Pensacola Rd. Project Number: [none] Reported:
Ackerman MS, 39735 Project Manager: Jim Ward 04/27/2022 10:15

Cooler Custody Seals Present	Yes	Received on Ice but Not Frozen	Yes
Containers Intact	Yes	No Ice, Short Trip	No
COC/Labels Agree	Yes	Obvious Contamination	No
Labels Complete	Yes	Rush to meet HT	No
COC Complete	Yes	Received within HT	
Volatile Vial Headspace >6mm	No	Proper Containers for Analysis	
Field Sheet/Instructions Included	No	Correct Preservation	
Samples Rejected/Documented in Log	No	Adequate Sample for Analysis	
Temp Taken From Temp Blank	Yes	Sample Custody Seals Present	
Temp Taken From Sample Container	No	Samples Missing from COC/Cooler	No
Temp Taken From Cooler	No		
COC meets acceptance criteria	Yes		

Choctaw Generation LP 2391 Pensacola Rd. Ackerman MS, 39735 Project: CGLP CCR Semi Annual

Project Number: [none]
Project Manager: Jim Ward

Reported: 04/27/2022 10:15

CASE NARRATIVE SUMMARY

All reported results are within Micro-Methods Laboratory, Inc.defined laboratory quality control objectives unless detailed in narrative summary or identified as qualifications. NOTE: All results listed on this report are calculated on a wet weight basis (as received by the laboratory) unless otherwise noted in the analysis qualification sections.

Summary Comments:

See attached results from Sub-Contract Laboratory

Total Metals-EPA 200.7 Rev 4.4

Qualifiers:

L1 LCS and/or LCSD Recovery Limit exceeded.

Barium 455.403 [Radial], Calcium 315.887 [Radial], Lithium 610.362 [Axial]

2C28025-BS1, 2C28026-BS1

Project: CGLP CCR Semi Annual

Project Number: [none]
Project Manager: Jim Ward

Reported: 04/27/2022 10:15

MW-9

2203470-01 (Water)

				70-01 (886	,					
	D !t	MDI	11.24.	Dil	Datal	Australia	Date Time	Date Time		0 15
Analyte	Result	MRL	Units	Dil	Batch	Analyst	Prepared	Analyzed	Method	Qualifiers
Classical Chemistry Parameters	i									
Fluoride	0.364	0.240	mg/L	1.0	2C28032	SSK	03/28/2022 10:00	03/28/2022 12:15	SM 4500-F D-2011	
Chloride	361	10.0	"	20.0	2C30042	DLW	03/28/2022 08:30	03/28/2022 18:43	SM 4110B 2011	
Sulfate as SO4	215	100	u	"	"	DLW	"	03/30/2022 00:13	"	
Total Dissolved Solids	838	1	u	1.0	2C25017	DLW	03/25/2022 10:30	03/29/2022 00:00	SM 2540 C-2011	
Metals by EPA 200 Series Metho	ds ICP-AES									
Barium 455.403 [Radial]	0.081	0.010	mg/L	1.0	2C28025	CLV	03/28/2022 09:30	03/29/2022 16:08	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	ND	0.050	"	"	"	CLV			"	
Calcium 315.887 [Radial]	46.4	0.050	· ·	"	"	CLV		03/30/2022 16:31	"	
Lithium 610.362 [Axial]	0.076	0.040	"	"	"	CLV		03/29/2022 16:08	"	
Metals by EPA 200 Series Metho	ds ICP-MS	Analysis M	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	2C28023	SCH	"	03/29/2022 20:19	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	"	"	SCH	"		"	
Beryllium [He]	0.00370	0.00100	"	"	"	SCH		"	"	
Cadmium [He]	ND	0.00100	"	"	"	SCH	"		*	
Chromium [He]	ND	0.00100	"	"	"	SCH		"	"	
Cobalt [He]	0.0175	0.00100	"	"	II .	SCH			"	
Lead [He]	ND	0.00100	"	"	"	SCH	"		II .	
Molybdenum [He]	ND	0.00100	"	"	"	SCH	"		"	
Selenium [NG]	ND	0.00500	"	"	"	SCH	"		п	

Project: CGLP CCR Semi Annual

Project Number: [none]
Project Manager: Jim Ward

Reported: 04/27/2022 10:15

OW-2

2203470-02 (Water)

					,					
	D	MDI	11.24.	Dil	Datal	Amakad	Date Time	Date Time		0 115
Analyte	Result	MRL	Units	Dil	Batch	Analyst	Prepared	Analyzed	Method	Qualifiers
Classical Chemistry Parame	eters									
Fluoride	0.243	0.240	mg/L	1.0	2C28032	SSK	03/28/2022 10:00	03/28/2022 12:15	SM 4500-F D-2011	
Chloride	77.2	2.00	"	4.0	2C30042	DLW	03/28/2022 08:30	03/28/2022 14:58	SM 4110B 2011	
Sulfate as SO4	126	50.0	"	10.0	"	DLW		03/30/2022 00:45	"	
Total Dissolved Solids	361	1	"	1.0	2C25017	DLW	03/25/2022 10:30	03/29/2022 00:00	SM 2540 C-2011	
Metals by EPA 200 Series Me	ethods ICP-AES	1								
Barium 455.403 [Radial]	0.050	0.010	mg/L	1.0	2C28025	CLV	03/28/2022 09:30	03/29/2022 16:19	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	ND	0.050	"	"	n n	CLV			"	
Calcium 315.887 [Radial]	41.2	0.050	"	"	"	CLV			"	
Lithium 610.362 [Axial]	0.052	0.040	"	"	"	CLV			"	
Metals by EPA 200 Series Me	ethods ICP-MS	Analysis N	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	2C28023	SCH	"	03/29/2022 20:37	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	"	· ·	SCH			"	
Beryllium [He]	ND	0.00100	"	"	"	SCH			"	
Cadmium [He]	ND	0.00100	"	"	"	SCH				
Chromium [He]	ND	0.00100	"	"	"	SCH			"	
Cobalt [He]	ND	0.00100	"	"	"	SCH			"	
Lead [He]	ND	0.00100	"	"	"	SCH			"	
Molybdenum [He]	ND	0.00100	"	"	"	SCH			"	
Selenium [NG]	ND	0.00500	"	"	"	SCH			"	

Project: CGLP CCR Semi Annual

Project Number: [none]
Project Manager: Jim Ward

Reported: 04/27/2022 10:15

MW-13

2203470-03 (Water)

			22007	10-03 (88)	ater,					
Analyte	Result	MRL	Units	Dil	Batch	Analyst	Date Time Prepared	Date Time Analyzed	Method	Qualifiers
Classical Chemistry Parame	ters									
Chloride	3.76	0.500	mg/L	1.0	2C30042	DLW	03/28/2022 08:30	03/28/2022 15:32	SM 4110B 2011	
Fluoride	ND	0.240	"	"	2C28032	SSK	03/28/2022 10:00	03/28/2022 12:15	SM 4500-F D-2011	
Sulfate as SO4	7.06	5.00	"	"	2C30042	DLW	03/28/2022 08:30	03/30/2022 01:16	SM 4110B 2011	
Total Dissolved Solids	160	1	"	"	2C25017	DLW	03/25/2022 10:30	03/29/2022 00:00	SM 2540 C-2011	
Metals by EPA 200 Series Me	thods ICP-AES	3								
Barium 455.403 [Radial]	0.189	0.010	mg/L	1.0	2C28025	CLV	03/28/2022 09:30	03/29/2022 16:23	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	ND	0.050	"	"	"	CLV			"	
Calcium 315.887 [Radial]	21.7	0.050	"	"	"	CLV			"	
Lithium 610.362 [Axial]	ND	0.040	"	"	"	CLV			"	
Metals by EPA 200 Series Me	thods ICP-MS	[Analysis N	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	2C28023	SCH	"	03/29/2022 21:01	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	"	"	SCH	*		"	
Beryllium [He]	ND	0.00100	"	"	"	SCH			•	
Cadmium [He]	ND	0.00100	"	"	"	SCH				
Chromium [He]	ND	0.00100	"	"	"	SCH			"	
Cobalt [He]	ND	0.00100	"		"	SCH				
Lead [He]	ND	0.00100	"	"	"	SCH			"	
Molybdenum [He]	ND	0.00100	"	"	"	SCH			"	
Selenium [NG]	ND	0.00500	"	"	"	SCH			"	

Project: CGLP CCR Semi Annual

Project Number: [none]
Project Manager: Jim Ward

Reported: 04/27/2022 10:15

MW-7

2203470-04 (Water)

							Date Time	Date Time		
Analyte	Result	MRL	Units	Dil	Batch	Analyst	Prepared	Analyzed	Method	Qualifiers
Classical Chemistry Parameter	's									
Chloride	3.19	0.500	mg/L	1.0	2C30042	DLW	03/28/2022 08:30	03/28/2022 19:47	SM 4110B 2011	
Fluoride	0.247	0.240	"	"	2C28032	SSK	03/28/2022 10:00	03/28/2022 12:15	SM 4500-F D-2011	
Sulfate as SO4	48.7	20.0	"	4.0	2C30042	DLW	03/28/2022 08:30	03/30/2022 03:24	SM 4110B 2011	
Total Dissolved Solids	166	1	"	1.0	2C25017	DLW	03/25/2022 10:30	03/29/2022 00:00	SM 2540 C-2011	
Metals by EPA 200 Series Meth	ods ICP-AES									
Barium 455.403 [Radial]	0.076	0.010	mg/L	1.0	2C28025	CLV	03/28/2022 09:30	03/29/2022 16:26	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	ND	0.050	"	"	"	CLV			"	
Calcium 315.887 [Radial]	31.5	0.050	"	"	"	CLV			"	
Lithium 610.362 [Axial]	ND	0.040	"	"	"	CLV			"	
Metals by EPA 200 Series Meth	ods ICP-MS	[Analysis M	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	2C28023	SCH	"	03/29/2022 21:08	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	"	"	SCH			"	
Beryllium [He]	ND	0.00100	"	"	"	SCH			"	
Cadmium [He]	ND	0.00100	"	"	"	SCH			"	
Chromium [He]	ND	0.00100	"	"	n n	SCH			"	
Cobalt [He]	ND	0.00100	"	"	"	SCH			"	
Lead [He]	ND	0.00100	"	"	n	SCH			"	
Molybdenum [He]	ND	0.00100	"	"	n	SCH			"	
Selenium [NG]	ND	0.00500	"	"	"	SCH			"	

Project: CGLP CCR Semi Annual

Project Number: [none]
Project Manager: Jim Ward

Reported: 04/27/2022 10:15

MW-14

2203470-05 (Water)

					,					
							Date Time	Date Time		
Analyte	Result	MRL	Units	Dil	Batch	Analyst	Prepared	Analyzed	Method	Qualifiers
Classical Chemistry Parameters										
Fluoride	ND	0.240	mg/L	1.0	2C28032	SSK	03/28/2022 10:00	03/28/2022 12:15	SM 4500-F D-2011	
Chloride	19.5	0.500	"	"	2C30042	DLW	03/28/2022 08:30	03/28/2022 20:51	SM 4110B 2011	
Sulfate as SO4	13.1	5.00	"	"	"	DLW		03/30/2022 04:28	"	
Total Dissolved Solids	91	1	"	"	2C25017	DLW	03/25/2022 10:30	03/29/2022 00:00	SM 2540 C-2011	
Metals by EPA 200 Series Method	s ICP-AES	3								
Barium 455.403 [Radial]	0.013	0.010	mg/L	1.0	2C28025	CLV	03/28/2022 09:30	03/29/2022 16:30	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	ND	0.050	"	"	"	CLV		"	"	
Calcium 315.887 [Radial]	0.645	0.050	"	"	"	CLV	*		"	
Lithium 610.362 [Axial]	ND	0.040	"	"	· ·	CLV		"	"	
Metals by EPA 200 Series Method	s ICP-MS	[Analysis N	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	2C28023	SCH	*	03/29/2022 21:14	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	"	"	SCH		"	"	
Beryllium [He]	ND	0.00100	"	"	"	SCH			"	
Cadmium [He]	ND	0.00100	"	"	"	SCH			•	
Chromium [He]	ND	0.00100	"	"	"	SCH			"	
Cobalt [He]	ND	0.00100	"	"	"	SCH			"	
Lead [He]	ND	0.00100	"	"	"	SCH			"	
Molybdenum [He]	ND	0.00100	"	"	"	SCH			"	
Selenium [NG]	ND	0.00500	"	"	"	SCH			"	

Choctaw Generation LP 2391 Pensacola Rd.

Ackerman MS, 39735

Project: CGLP CCR Semi Annual

Project Number: [none]
Project Manager: Jim Ward

Reported: 04/27/2022 10:15

Field Blank

2203470-06 (Water)

Analyte Result	MRL	Units	Dil			Date Time	Date Time		
Analyte Result	MRL	Units	1)11		A I 4	Prepared	Analyzad		0 ""
			511	Batch	Analyst	Prepared	Analyzed	Method	Qualifiers
Classical Chemistry Parameters									
Fluoride ND	0.240	mg/L	1.0	2C28032	SSK	03/28/2022 10:00	03/28/2022 12:15	SM 4500-F D-2011	
Chloride 4.29	0.500	"	"	2C30042	DLW	03/28/2022 08:30	03/28/2022 21:23	SM 4110B 2011	
Sulfate as SO4 14.8	5.00	"	"	"	DLW		03/30/2022 05:00		
Total Dissolved Solids ND	1	"	"	2C25017	DLW	03/25/2022 10:30	03/29/2022 00:00	SM 2540 C-2011	
Metals by EPA 200 Series Methods ICP-AES	3								
Barium 455.403 [Radial] ND	0.010	mg/L	1.0	2C28025	CLV	03/28/2022 09:30	03/29/2022 16:34	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial] 0.279	0.050	"	"	"	CLV			"	
Calcium 315.887 [Radial] ND	0.050	"	"	"	CLV			"	
Lithium 610.362 [Axial] ND	0.040	"	"	"	CLV		"	"	
Metals by EPA 200 Series Methods ICP-MS	[Analysis N	lode]							
Antimony [He] ND	0.00200	mg/L	1.0	2C28023	SCH		03/29/2022 21:20	EPA 200.8 Rev 5.4	
Arsenic [NG] ND	0.00200	"	"	"	SCH			"	
Beryllium [He] ND	0.00100	"	"	"	SCH		"	"	
Cadmium [He] ND	0.00100	"	"	n .	SCH			"	
Chromium [He] ND	0.00100	"		"	SCH			"	
Cobalt [He] ND	0.00100	"	"	"	SCH			"	
Lead [He] ND	0.00100	"	"	"	SCH			"	
Molybdenum [He] ND	0.00100	"	"	"	SCH			"	
Selenium [NG] ND	0.00500	"	u	"	SCH			п	

Project: CGLP CCR Semi Annual

Project Number: [none]
Project Manager: Jim Ward

Reported: 04/27/2022 10:15

Duplicate

2203470-07 (Water)

			22007	10-01 (88)	ater,					
Analyte	Result	MRL	Units	Dil	Batch	Analyst	Date Time Prepared	Date Time Analyzed	Method	Qualifiers
Classical Chemistry Parameters	 S							· · · · · · · · · · · · · · · · · · ·		
Chloride	19.0	0.500	mg/L	1.0	2C30042	DLW	03/28/2022 08:30	03/28/2022 21:55	SM 4110B 2011	
Fluoride	ND	0.240	"	"	2C28032	SSK	03/28/2022 10:00	03/28/2022 12:15	SM 4500-F D-2011	
Sulfate as SO4	12.5	5.00	"	"	2C30042	DLW	03/28/2022 08:30	03/30/2022 05:32	SM 4110B 2011	
Total Dissolved Solids	93	1	"	"	2C25017	DLW	03/25/2022 10:30	03/29/2022 00:00	SM 2540 C-2011	
Metals by EPA 200 Series Metho	ds ICP-AES	3								
Barium 455.403 [Radial]	0.013	0.010	mg/L	1.0	2C28025	CLV	03/28/2022 09:30	03/29/2022 16:37	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	ND	0.050	"	"	"	CLV			"	
Calcium 315.887 [Radial]	0.645	0.050	"	"	"	CLV			"	
Lithium 610.362 [Axial]	ND	0.040	"	"	"	CLV			•	
Metals by EPA 200 Series Metho	ds ICP-MS	[Analysis N	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	2C28023	SCH	"	03/29/2022 21:26	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	"	"	SCH			"	
Beryllium [He]	ND	0.00100	"	"	"	SCH				
Cadmium [He]	ND	0.00100	"	"	"	SCH			"	
Chromium [He]	ND	0.00100	"		"	SCH			"	
Cobalt [He]	ND	0.00100	"		"	SCH				
Lead [He]	ND	0.00100	"	"	"	SCH			,	
Molybdenum [He]	ND	0.00100	"	"	"	SCH			"	
Selenium [NG]	ND	0.00500	"	"	"	SCH			"	

Project: CGLP CCR Semi Annual

Project Number: [none]
Project Manager: Jim Ward

Reported: 04/27/2022 10:15

MW-12

2203470-08 (Water)

			22034	70-00 (ater					
							Date Time	Date Time		
Analyte	Result	MRL	Units	Dil	Batch	Analyst	Prepared	Analyzed	Method	Qualifiers
Classical Chemistry Parame	eters									
Chloride	62.8	2.50	mg/L	5.0	2C30042	DLW	03/28/2022 08:30	03/30/2022 06:04	SM 4110B 2011	
Fluoride	ND	0.240	"	1.0	2C28032	SSK	03/28/2022 10:00	03/28/2022 12:15	SM 4500-F D-2011	
Sulfate as SO4	98.8	25.0	"	5.0	2C30042	DLW	03/28/2022 08:30	03/30/2022 06:04	SM 4110B 2011	
Total Dissolved Solids	327	1	"	1.0	2C25017	DLW	03/25/2022 10:30	03/29/2022 00:00	SM 2540 C-2011	
Metals by EPA 200 Series M	ethods ICP-AES									
Barium 455.403 [Radial]	0.236	0.010	mg/L	1.0	2C28025	CLV	03/28/2022 09:30	03/29/2022 16:41	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	ND	0.050	"	"	"	CLV			"	
Calcium 315.887 [Radial]	33.8	0.050	"	"	"	CLV		•	"	
Lithium 610.362 [Axial]	ND	0.040	"	"	"	CLV	*		"	
Metals by EPA 200 Series M	ethods ICP-MS [Analysis N	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	2C28023	SCH	"	03/29/2022 21:32	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	"	"	SCH	*		"	
Beryllium [He]	ND	0.00100	"	"	"	SCH			•	
Cadmium [He]	ND	0.00100	"	"	"	SCH				
Chromium [He]	ND	0.00100	"	"	"	SCH			"	
Cobalt [He]	0.00339	0.00100	"	"	"	SCH				
Lead [He]	ND	0.00100	"	"	"	SCH			"	
Molybdenum [He]	ND	0.00100	"	"	u u	SCH			"	
Selenium [NG]	ND	0.00500	"	"	"	SCH			"	

Project: CGLP CCR Semi Annual

Project Number: [none]
Project Manager: Jim Ward

Reported: 04/27/2022 10:15

CCR-2

2203470-09 (Water)

			22007	10-03 (88)	uto.,					
Analyte	Result	MRL	Units	Dil	Batch	Analyst	Date Time Prepared	Date Time Analyzed	Method	Qualifiers
Classical Chemistry Parame										
Chloride	2.53	0.500	mg/L	1.0	2C30042	DLW	03/28/2022 08:30	03/28/2022 23:30	SM 4110B 2011	
Fluoride	ND	0.240	u	"	2C28032	SSK	03/28/2022 10:00	03/28/2022 12:15	SM 4500-F D-2011	
Sulfate as SO4	12.2	5.00	"	"	2C30042	DLW	03/28/2022 08:30	03/30/2022 06:36	SM 4110B 2011	
Total Dissolved Solids	128	1	"	"	2C25017	DLW	03/25/2022 10:30	03/29/2022 00:00	SM 2540 C-2011	
Metals by EPA 200 Series M	ethods ICP-AES									
Barium 455.403 [Radial]	0.161	0.010	mg/L	1.0	2C28025	CLV	03/28/2022 09:30	03/29/2022 16:44	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	ND	0.050	"	"	"	CLV	"		"	
Calcium 315.887 [Radial]	16.5	0.050	"	"	"	CLV			"	
Lithium 610.362 [Axial]	ND	0.040	"	"	"	CLV		•	"	
Metals by EPA 200 Series M	ethods ICP-MS [Analysis N	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	2C28023	SCH	"	03/29/2022 21:39	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	"	"	SCH	"		"	
Beryllium [He]	ND	0.00100	"	"	"	SCH			"	
Cadmium [He]	ND	0.00100	"	"	"	SCH	"		"	
Chromium [He]	ND	0.00100	"		"	SCH	"		"	
Cobalt [He]	0.00650	0.00100	"	"		SCH			"	
Lead [He]	ND	0.00100	"	"	n n	SCH			"	
Molybdenum [He]	ND	0.00100	u	"	"	SCH			"	
Selenium [NG]	ND	0.00500	·	"	"	SCH			"	

Project: CGLP CCR Semi Annual

Project Number: [none]
Project Manager: Jim Ward

Reported: 04/27/2022 10:15

CCR-3

2203470-10 (Water)

			22007	10-10 (886	ater,					
	Develt	MDI	11.24.	Dil	Datab	Amakast	Date Time Prepared	Date Time Analyzed		0 115
Analyte	Result	MRL	Units	Dil	Batch	Analyst	Prepared	Analyzeu	Method	Qualifiers
Classical Chemistry Parame	eters									
Chloride	4.59	0.500	mg/L	1.0	2C30042	DLW	03/28/2022 08:30	03/29/2022 01:06	SM 4110B 2011	
Fluoride	ND	0.240	"	"	2C28032	SSK	03/28/2022 10:00	03/28/2022 12:15	SM 4500-F D-2011	
Sulfate as SO4	369	250	"	50.0	2C30042	DLW	03/28/2022 08:30	03/30/2022 07:07	SM 4110B 2011	
Total Dissolved Solids	495	1	"	1.0	2C25017	DLW	03/25/2022 10:30	03/29/2022 00:00	SM 2540 C-2011	
Metals by EPA 200 Series Me	ethods ICP-AES									
Barium 455.403 [Radial]	0.078	0.010	mg/L	1.0	2C28025	CLV	03/28/2022 09:30	03/29/2022 16:48	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	ND	0.050	"	"	"	CLV			"	
Calcium 315.887 [Radial]	39.7	0.050	"	"	"	CLV			"	
Lithium 610.362 [Axial]	0.131	0.040	"	"	"	CLV			"	
Metals by EPA 200 Series Me	ethods ICP-MS [Analysis M	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	2C28023	SCH	"	03/29/2022 21:45	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	"	"	SCH	"		"	
Beryllium [He]	ND	0.00100	"	"	"	SCH			•	
Cadmium [He]	ND	0.00100	"	"	"	SCH			"	
Chromium [He]	ND	0.00100	"	u	"	SCH				
Cobalt [He]	0.0259	0.00100	"	"	"	SCH	"		"	
Lead [He]	ND	0.00100	"	"	"	SCH	"		"	
Molybdenum [He]	ND	0.00100	"	"	"	SCH			"	
Selenium [NG]	ND	0.00500	"	"	n	SCH			"	

Project: CGLP CCR Semi Annual

Project Number: [none]
Project Manager: Jim Ward

Reported: 04/27/2022 10:15

CCR-4

2203470-11 (Water)

			2200-	70-11 (44	ato.,					
Analyte	Result	MRL	Units	Dil	Batch	Analyst	Date Time Prepared	Date Time Analyzed	Method	Qualifiers
Classical Chemistry Parame	eters									
Chloride	8.06	0.500	mg/L	1.0	2C30042	DLW	03/28/2022 08:30	03/29/2022 02:10	SM 4110B 2011	
Fluoride	ND	0.240	"	"	2C28032	SSK	03/28/2022 10:00	03/28/2022 12:15	SM 4500-F D-2011	
Sulfate as SO4	30.3	10.0	"	2.0	2C30042	DLW	03/28/2022 08:30	03/30/2022 07:39	SM 4110B 2011	
Total Dissolved Solids	203	1	"	1.0	2C25017	DLW	03/25/2022 10:30	03/29/2022 00:00	SM 2540 C-2011	
Metals by EPA 200 Series M	lethods ICP-AES									
Barium 455.403 [Radial]	0.176	0.010	mg/L	1.0	2C28026	CLV	03/28/2022 09:30	03/29/2022 17:43	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	ND	0.050	"	"	"	CLV		"		
Calcium 315.887 [Radial]	26.5	0.050	"	"	"	CLV			"	
Lithium 610.362 [Axial]	ND	0.040	"	"	"	CLV			"	
Metals by EPA 200 Series M	lethods ICP-MS [Analysis N	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	2C28023	SCH	"	03/29/2022 21:51	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	"	"	SCH		"	"	
Beryllium [He]	ND	0.00100	"	"	"	SCH			•	
Cadmium [He]	ND	0.00100	"	"	"	SCH			"	
Chromium [He]	ND	0.00100	"	"	"	SCH			"	
Cobalt [He]	0.00434	0.00100	"	"	"	SCH			"	
Lead [He]	ND	0.00100	"	"	"	SCH			"	
Molybdenum [He]	ND	0.00100	"	"	"	SCH			"	
Selenium [NG]	ND	0.00500	"	"	"	SCH	"		"	

Project: CGLP CCR Semi Annual

Project Number: [none]
Project Manager: Jim Ward

Reported: 04/27/2022 10:15

CCR-5

2203470-12 (Water)

Analyte	Result	MRL	Units	Dil	Batch	Analyst	Date Time Prepared	Date Time Analyzed	Method	Qualifiers
Classical Chemistry Parame	eters					-				
Fluoride	ND	0.240	mg/L	1.0	2C28032	SSK	03/28/2022 10:00	03/28/2022 12:15	SM 4500-F D-2011	
Chloride	6.06	0.500	"	"	2C30042	DLW	03/28/2022 08:30	03/29/2022 02:42	SM 4110B 2011	
Sulfate as SO4	612	250	"	50.0	"	DLW	"	03/30/2022 08:11	n .	
Total Dissolved Solids	851	1	"	1.0	2C25017	DLW	03/25/2022 10:30	03/29/2022 00:00	SM 2540 C-2011	
Metals by EPA 200 Series M	lethods ICP-AES									
Barium 455.403 [Radial]	0.086	0.010	mg/L	1.0	2C28026	CLV	03/28/2022 09:30	03/29/2022 17:47	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	0.096	0.050	"	"	"	CLV				
Calcium 315.887 [Radial]	115	0.250	"	5.0	"	CLV		03/30/2022 16:28	"	
Lithium 610.362 [Axial]	ND	0.040	"	1.0	"	CLV		03/29/2022 17:47	"	
Metals by EPA 200 Series M	lethods ICP-MS [Analysis N	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	2C28023	SCH	"	03/29/2022 22:10	EPA 200.8 Rev 5.4	
Arsenic [NG]	0.00412	0.00200	"	"	"	SCH			"	
Beryllium [He]	ND	0.00100	"	u	"	SCH			"	
Cadmium [He]	ND	0.00100	"		"	SCH			"	
Chromium [He]	ND	0.00100	"	"	"	SCH			"	
Cobalt [He]	0.0125	0.00100	"	"	"	SCH			"	
Lead [He]	ND	0.00100	"	"	"	SCH			"	
Molybdenum [He]	ND	0.00100	"		"	SCH			"	
Selenium [NG]	ND	0.00500	"	"	"	SCH			"	

Project: CGLP CCR Semi Annual

Project Number: [none]
Project Manager: Jim Ward

Reported: 04/27/2022 10:15

Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Batch 2C25017 - Default Prep Gen	Chem										
Blank (2C25017-BLK1)											
Total Dissolved Solids	3/29/22 0:00	ND	1	mg/L							
LCS (2C25017-BS1)											
Total Dissolved Solids	3/29/22 0:00	115	1	mg/L	150		76.7	65-105			
LCS Dup (2C25017-BSD1)											
Total Dissolved Solids	3/29/22 0:00	110	1	mg/L	150		73.3	65-105	4.44	15	
Duplicate (2C25017-DUP1)			Source: 22034	50-03							
Total Dissolved Solids	3/29/22 0:00	1769	1	mg/L		1776			0.395	10	
Duplicate (2C25017-DUP2)			Source: 22034	70-12							
Total Dissolved Solids	3/29/22 0:00	853	1	mg/L		851			0.235	10	
Batch 2C28032 - Default Prep Gen	Chem										
Blank (2C28032-BLK1)											
Fluoride	3/28/22 12:15	ND	0.240	mg/L							
LCS (2C28032-BS1)											
Fluoride	3/28/22 12:15	2.03	0.240	mg/L	2.00		102	83.3-107			
LCS Dup (2C28032-BSD1)											
Fluoride	3/28/22 12:15	2.01	0.240	mg/L	2.00		101	83.3-107	0.990	30	
Duplicate (2C28032-DUP1)			Source: 22034	70-01							
Fluoride	3/28/22 12:15	0.353	0.240	mg/L		0.364			3.07	20	

Project: CGLP CCR Semi Annual

Project Number: [none]
Project Manager: Jim Ward

Reported: 04/27/2022 10:15

Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Batch 2C28032 - Default Prep Ge	enChem										
Matrix Spike (2C28032-MS1)			Source: 22034	70-01							
Fluoride	3/28/22 12:15	6.36	0.240	mg/L	6.00	0.364	99.9	79.3-113			
Matrix Spike Dup (2C28032-MSD	1)		Source: 22034	70-01							
Fluoride	3/28/22 12:15	6.79	0.240	mg/L	6.00	0.364	107	79.3-113	6.54	30	
Batch 2C30042 - Default Prep Ge	enChem										
Blank (2C30042-BLK1)											
Chloride	3/28/22 10:37	ND	0.500	mg/L							
Sulfate as SO4	4/1/22 12:11	ND	5.00								
Blank (2C30042-BLK2)											
Chloride	3/29/22 7:29	ND	0.500	mg/L							
Sulfate as SO4	3/29/22 7:29	ND	5.00								
LCS (2C30042-BS1)											
Chloride	3/28/22 9:33	10.3	0.500	mg/L	10.0		103	86.3-109			
Sulfate as SO4	4/1/22 12:11	10.3	5.00		10.0		103	88-108			
LCS (2C30042-BS2)											
Chloride	3/29/22 6:25	10.4	0.500	mg/L	10.0		104	86.3-109			
Sulfate as SO4	4/1/22 12:00	10.1	5.00		10.0		101	88-108			
LCS Dup (2C30042-BSD1)											
Chloride	3/28/22 10:05	10.4	0.500	mg/L	10.0		104	86.3-109	0.977	20	
Sulfate as SO4	4/1/22 12:11	ND	5.00		10.0			88-108	200	20	

Project: CGLP CCR Semi Annual

Project Number: [none]
Project Manager: Jim Ward

Reported: 04/27/2022 10:15

Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Batch 2C30042 - Default Prep G	GenChem			_	_	_	_	_	_	_	
LCS Dup (2C30042-BSD2)											
Chloride	3/29/22 6:57	10.4	0.500	mg/L	10.0		104	86.3-109	0.00	20	
Sulfate as SO4	3/29/22 6:57	10.1	5.00		10.0		101	88-108	0.00396	20	
Duplicate (2C30042-DUP1)			Source: 22034	70-03							
Chloride	3/28/22 16:04	3.76	0.500	mg/L		3.76			0.0266	20	
Sulfate as SO4	4/1/22 12:11	ND	5.00			7.06			200	20	
Duplicate (2C30042-DUP2)			Source: 22034	70-03							
Chloride	3/30/22 1:48	3.88	0.500	mg/L		3.76			3.29	20	
Sulfate as SO4	3/30/22 1:48	7.09	5.00			7.06			0.410	20	
Matrix Spike (2C30042-MS1)			Source: 22034	70-03							
Chloride	3/28/22 16:36	16.6	0.500	mg/L	12.0	3.76	107	76.2-122			
Sulfate as SO4	4/1/22 12:11	ND	5.00		12.0	7.06	NR	74.1-129			
Matrix Spike (2C30042-MS2)			Source: 22034	70-03							
Chloride	3/30/22 2:20	17.2	0.500	mg/L	12.0	3.76	112	76.2-122			
Sulfate as SO4	3/30/22 2:20	17.7	5.00	•	12.0	7.06	88.4	74.1-129			
Matrix Spike Dup (2C30042-MS	D1)		Source: 22034	70-03							
Chloride	3/28/22 17:07	17.9	0.500	mg/L	12.0	3.76	117	76.2-122	7.12	20	
Sulfate as SO4	4/1/22 12:11	ND	5.00		12.0	7.06	NR	74.1-129		20	
Matrix Spike Dup (2C30042-MS	D2)		Source: 22034	70-03							
Chloride	3/30/22 2:52	16.9	0.500	mg/L	12.0	3.76	110	76.2-122	1.42	20	
Sulfate as SO4	3/30/22 2:52	18.7	5.00		12.0	7.06	96.9	74.1-129	5.65	20	

Project: CGLP CCR Semi Annual

Project Number: [none]
Project Manager: Jim Ward

Reported: 04/27/2022 10:15

Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Batch 2C31009 - Default Prep Gen	Chem										
Blank (2C31009-BLK1)											
Chloride	3/29/22 7:29	ND	0.500	mg/L							
Blank (2C31009-BLK2)											
Chloride	3/30/22 12:26	ND	0.500	mg/L							
Duplicate (2C31009-DUP1)			Source: 22034	70-03							
Chloride	3/28/22 16:04	3.76	0.500	mg/L		3.76			0.0266	20	
Sulfate as SO4	3/28/22 16:04	6.85	5.00			7.06			3.11	20	

Project: CGLP CCR Semi Annual

Project Number: [none]
Project Manager: Jim Ward

Reported: 04/27/2022 10:15

Metals by EPA 200 Series Methods ICP-AES - Quality Control

Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Batch 2C28025 - EPA 200.2 DCN 1	017 Rev 10										·
Blank (2C28025-BLK1)											
Barium 455.403 [Radial]	3/29/22 15:57	ND	0.010	mg/L							
Boron 249.773 [Radial]	3/29/22 15:57	ND	0.050								
Calcium 315.887 [Radial]	3/29/22 15:57	ND	0.050								
Lithium 610.362 [Axial]	3/29/22 15:57	ND	0.040								
LCS (2C28025-BS1)											
Barium 455.403 [Radial]	3/29/22 16:01	0.239	0.010	mg/L	0.200		119	85-115			L1
Boron 249.773 [Radial]	3/29/22 16:01	0.228	0.050		0.200		114	85-115			
Calcium 315.887 [Radial]	3/29/22 16:01	0.239	0.050		0.200		120	85-115			L1
Lithium 610.362 [Axial]	3/29/22 16:01	0.467	0.040		0.400		117	85-115			L1
LCS Dup (2C28025-BSD1)											
Barium 455.403 [Radial]	3/29/22 16:04	0.227	0.010	mg/L	0.200		114	85-115	4.85	20	
Boron 249.773 [Radial]	3/29/22 16:04	0.222	0.050		0.200		111	85-115	2.84	20	
Calcium 315.887 [Radial]	3/29/22 16:04	0.230	0.050		0.200		115	85-115	4.09	20	
Lithium 610.362 [Axial]	3/29/22 16:04	0.451	0.040		0.400		113	85-115	3.62	20	
Duplicate (2C28025-DUP1)			Source: 22034	70-01							
Calcium 315.887 [Radial]	3/30/22 16:35	44.3	0.050	mg/L		46.4			4.55	20	
Matrix Spike (2C28025-MS1)			Source: 22034	70-01							
Barium 455.403 [Radial]	3/29/22 16:12	0.295	0.010	mg/L	0.200	0.081	107	70-130			
Boron 249.773 [Radial]	3/29/22 16:12	0.231	0.050		0.200	0.016	107	70-130			
Lithium 610.362 [Axial]	3/29/22 16:12	0.482	0.040		0.400	0.076	102	70-130			
Matrix Spike Dup (2C28025-MSD1))		Source: 22034	70-01							
Barium 455.403 [Radial]	3/29/22 16:15	0.298	0.010	mg/L	0.200	0.081	108	70-130	1.07	20	
Boron 249.773 [Radial]	3/29/22 16:15	0.231	0.050		0.200	0.016	107	70-130	0.112	20	
Lithium 610.362 [Axial]	3/29/22 16:15	0.471	0.040		0.400	0.076	98.7	70-130	2.40	20	

Project: CGLP CCR Semi Annual

Project Number: [none]
Project Manager: Jim Ward

Reported: 04/27/2022 10:15

Metals by EPA 200 Series Methods ICP-AES - Quality Control

Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Batch 2C28026 - EPA 200.2 DCN 1	1017 Rev 10										
Blank (2C28026-BLK1)											
Barium 455.403 [Radial]	3/29/22 15:57	ND	0.010	mg/L							
Boron 249.773 [Radial]	3/29/22 15:57	ND	0.050								
Calcium 315.887 [Radial]	3/29/22 15:57	ND	0.050								
Lithium 610.362 [Axial]	3/29/22 15:57	ND	0.040								
LCS (2C28026-BS1)											
Barium 455.403 [Radial]	3/29/22 16:01	0.239	0.010	mg/L	0.200		119	85-115			L1
Boron 249.773 [Radial]	3/29/22 16:01	0.228	0.050		0.200		114	85-115			
Calcium 315.887 [Radial]	3/29/22 16:01	0.239	0.050		0.200		120	85-115			L1
Lithium 610.362 [Axial]	3/29/22 16:01	0.467	0.040		0.400		117	85-115			L1
LCS Dup (2C28026-BSD1)											
Barium 455.403 [Radial]	3/29/22 16:04	0.227	0.010	mg/L	0.200		114	85-115	4.85	20	
Boron 249.773 [Radial]	3/29/22 16:04	0.222	0.050		0.200		111	85-115	2.84	20	
Calcium 315.887 [Radial]	3/29/22 16:04	0.230	0.050		0.200		115	85-115	4.09	20	
Lithium 610.362 [Axial]	3/29/22 16:04	0.451	0.040		0.400		113	85-115	3.62	20	
Matrix Spike (2C28026-MS1)			Source: 22034	59-02							
Barium 455.403 [Radial]	3/29/22 17:36	0.218	0.010	mg/L	0.200	0.0003	109	70-130			
Boron 249.773 [Radial]	3/29/22 17:36	0.219	0.050		0.200	0.009	105	70-130			
Calcium 315.887 [Radial]	3/29/22 17:36	0.278	0.050		0.200	0.067	105	70-130			
Lithium 610.362 [Axial]	3/29/22 17:36	0.427	0.040		0.400	ND	107	70-130			
Matrix Spike Dup (2C28026-MSD1)		Source: 22034	59-02							
Barium 455.403 [Radial]	3/29/22 17:39	0.219	0.010	mg/L	0.200	0.0003	110	70-130	0.651	20	
Boron 249.773 [Radial]	3/29/22 17:39	0.216	0.050		0.200	0.009	103	70-130	1.50	20	
Calcium 315.887 [Radial]	3/29/22 17:39	0.270	0.050		0.200	0.067	101	70-130	2.81	20	
Lithium 610.362 [Axial]	3/29/22 17:39	0.425	0.040		0.400	ND	106	70-130	0.492	20	

Project: CGLP CCR Semi Annual

Project Number: [none] Reported:
Project Manager: Jim Ward 04/27/2022 10:15

Metals by EPA 200 Series Methods ICP-MS [Analysis Mode] - Quality Control

Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Batch 2C28023 - EPA 200.2 DCN	1017 Rev 10										
Blank (2C28023-BLK1)											
Antimony [He]	3/29/22 20:00	ND	0.00200	mg/L							
Arsenic [NG]	3/29/22 20:00	ND	0.00200								
Arsenic [He]	3/29/22 20:00	ND	0.00200								
Beryllium [He]	3/29/22 20:00	ND	0.00100								
Cadmium [He]	3/29/22 20:00	ND	0.00100								
Chromium [He]	3/29/22 20:00	ND	0.00100								
Cobalt [He]	3/29/22 20:00	ND	0.00100								
Lead [He]	3/29/22 20:00	ND	0.00100								
Molybdenum [He]	3/29/22 20:00	ND	0.00100								
Selenium [He]	3/29/22 20:00	ND	0.00100								
Selenium [NG]	3/29/22 20:00	ND	0.00500								
LCS (2C28023-BS1)											
Antimony [He]	3/29/22 20:06	0.110	0.00200	mg/L	0.100		110	85-115			
Arsenic [NG]	3/29/22 20:06	0.106	0.00200		0.100		106	85-115			
Arsenic [He]	3/29/22 20:06	0.109	0.00200		0.100		109	85-115			
Beryllium [He]	3/29/22 20:06	0.109	0.00100		0.100		109	85-115			
Cadmium [He]	3/29/22 20:06	0.111	0.00100		0.100		111	85-115			
Chromium [He]	3/29/22 20:06	0.109	0.00100		0.100		109	85-115			
Cobalt [He]	3/29/22 20:06	0.109	0.00100		0.100		109	85-115			
Lead [He]	3/29/22 20:06	0.106	0.00100		0.100		106	85-115			
Molybdenum [He]	3/29/22 20:06	0.107	0.00100		0.100		107	85-115			
Selenium [NG]	3/29/22 20:06	0.107	0.00500		0.100		107	85-115			
Selenium [He]	3/29/22 20:06	0.107	0.00100		0.100		107	85-115			
LCS Dup (2C28023-BSD1)											
Antimony [He]	3/29/22 20:13	0.108	0.00200	mg/L	0.100		108	85-115	1.36	20	
Arsenic [He]	3/29/22 20:13	0.106	0.00200		0.100		106	85-115	2.42	20	
Arsenic [NG]	3/29/22 20:13	0.106	0.00200		0.100		106	85-115	0.422	20	
Beryllium [He]	3/29/22 20:13	0.108	0.00100		0.100		108	85-115	0.984	20	
Cadmium [He]	3/29/22 20:13	0.109	0.00100		0.100		109	85-115	1.21	20	
Chromium [He]	3/29/22 20:13	0.107	0.00100		0.100		107	85-115	1.58	20	
Cobalt [He]	3/29/22 20:13	0.108	0.00100		0.100		108	85-115	0.501	20	
Lead [He]	3/29/22 20:13	0.105	0.00100		0.100		105	85-115	1.40	20	
Molybdenum [He]	3/29/22 20:13	0.106	0.00100		0.100		106	85-115	1.20	20	
Selenium [He]	3/29/22 20:13	0.106	0.00100		0.100		106	85-115	0.263	20	
Selenium [NG]	3/29/22 20:13	0.106	0.00500		0.100		106	85-115	0.897	20	

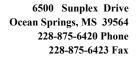
Project: CGLP CCR Semi Annual

Project Number: [none]
Project Manager: Jim Ward

Reported: 04/27/2022 10:15

Metals by EPA 200 Series Methods ICP-MS [Analysis Mode] - Quality Control

Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Batch 2C28023 - EPA 200.2 DCN	N 1017 Rev 10										
Matrix Spike (2C28023-MS1)			Source: 22034	70-01							
Antimony [He]	3/29/22 20:25	0.110	0.00200	mg/L	0.100	ND	110	70-130			
Arsenic [He]	3/29/22 20:25	0.107	0.00200		0.100	0.0003	106	70-130			
Arsenic [NG]	3/29/22 20:25	0.104	0.00200		0.100	ND	104	70-130			
Beryllium [He]	3/29/22 20:25	0.111	0.00100		0.100	0.004	107	70-130			
Cadmium [He]	3/29/22 20:25	0.103	0.00100		0.100	0.0006	102	70-130			
Chromium [He]	3/29/22 20:25	0.101	0.00100		0.100	ND	101	70-130			
Cobalt [He]	3/29/22 20:25	0.112	0.00100		0.100	0.018	94.1	70-130			
Lead [He]	3/29/22 20:25	0.109	0.00100		0.100	0.0008	108	70-130			
Molybdenum [He]	3/29/22 20:25	0.121	0.00100		0.100	0.0003	120	70-130			
Selenium [NG]	3/29/22 20:25	0.101	0.00500		0.100	ND	101	70-130			
Selenium [He]	3/29/22 20:25	0.103	0.00100		0.100	0.003	100	70-130			
Matrix Spike (2C28023-MS2)			Source: 22034	70-11							
Antimony [He]	3/29/22 21:58	0.111	0.00200	mg/L	0.100	ND	111	70-130			
Arsenic [He]	3/29/22 21:58	0.109	0.00200		0.100	0.0007	108	70-130			
Arsenic [NG]	3/29/22 21:58	0.107	0.00200		0.100	0.0009	106	70-130			
Beryllium [He]	3/29/22 21:58	0.108	0.00100		0.100	0.0002	108	70-130			
Cadmium [He]	3/29/22 21:58	0.107	0.00100		0.100	ND	107	70-130			
Chromium [He]	3/29/22 21:58	0.107	0.00100		0.100	ND	107	70-130			
Cobalt [He]	3/29/22 21:58	0.108	0.00100		0.100	0.004	103	70-130			
Lead [He]	3/29/22 21:58	0.106	0.00100		0.100	ND	106	70-130			
Molybdenum [He]	3/29/22 21:58	0.112	0.00100		0.100	ND	112	70-130			
Selenium [He]	3/29/22 21:58	0.102	0.00100		0.100	ND	102	70-130			
Selenium [NG]	3/29/22 21:58	0.106	0.00500		0.100	ND	106	70-130			
Matrix Spike Dup (2C28023-MSI	D1)		Source: 22034	70-01							
Antimony [He]	3/29/22 20:31	0.111	0.00200	mg/L	0.100	ND	111	70-130	1.29	20	
Arsenic [NG]	3/29/22 20:31	0.105	0.00200		0.100	ND	105	70-130	1.30	20	
Arsenic [He]	3/29/22 20:31	0.108	0.00200		0.100	0.0003	107	70-130	0.937	20	
Beryllium [He]	3/29/22 20:31	0.110	0.00100		0.100	0.004	106	70-130	1.06	20	
Cadmium [He]	3/29/22 20:31	0.103	0.00100		0.100	0.0006	103	70-130	0.721	20	
Chromium [He]	3/29/22 20:31	0.102	0.00100		0.100	ND	102	70-130	0.883	20	
Cobalt [He]	3/29/22 20:31	0.114	0.00100		0.100	0.018	96.5	70-130	2.12	20	
Lead [He]	3/29/22 20:31	0.110	0.00100		0.100	0.0008	109	70-130	0.413	20	
Molybdenum [He]	3/29/22 20:31	0.120	0.00100		0.100	0.0003	120	70-130	0.283	20	
Selenium [He]	3/29/22 20:31	0.108	0.00100		0.100	0.003	105	70-130	4.46	20	
Selenium [NG]	3/29/22 20:31	0.101	0.00500		0.100	ND	101	70-130	0.838	20	


Project: CGLP CCR Semi Annual

Project Number: [none]
Project Manager: Jim Ward

Reported: 04/27/2022 10:15

Metals by EPA 200 Series Methods ICP-MS [Analysis Mode] - Quality Control

Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Batch 2C28023 - EPA 200.2 DCN 1017	Rev 10										
Matrix Spike Dup (2C28023-MSD2)			Source: 22034	70-11							
Antimony [He]	3/29/22 22:04	0.114	0.00200	mg/L	0.100	ND	114	70-130	2.35	20	
Arsenic [He]	3/29/22 22:04	0.111	0.00200		0.100	0.0007	110	70-130	1.83	20	
Arsenic [NG]	3/29/22 22:04	0.109	0.00200		0.100	0.0009	108	70-130	1.20	20	
Beryllium [He]	3/29/22 22:04	0.108	0.00100		0.100	0.0002	108	70-130	0.00526	20	
Cadmium [He]	3/29/22 22:04	0.110	0.00100		0.100	ND	110	70-130	2.21	20	
Chromium [He]	3/29/22 22:04	0.106	0.00100		0.100	ND	106	70-130	1.02	20	
Cobalt [He]	3/29/22 22:04	0.108	0.00100		0.100	0.004	104	70-130	0.523	20	
Lead [He]	3/29/22 22:04	0.109	0.00100		0.100	ND	109	70-130	2.40	20	
Molybdenum [He]	3/29/22 22:04	0.116	0.00100		0.100	ND	116	70-130	3.12	20	
Selenium [He]	3/29/22 22:04	0.104	0.00100		0.100	ND	104	70-130	1.79	20	
Selenium [NG]	3/29/22 22:04	0.107	0.00500		0.100	ND	107	70-130	0.978	20	

Choctaw Generation LP 2391 Pensacola Rd. Project: CGLP CCR Semi Annual

Project Number: [none]
Project Manager: Jim Ward

Reported: 04/27/2022 10:15

Certified Analyses Included in this Report

Ackerman MS, 39735

Analyte	Certification Code
EPA 200.7 Rev 4.4 in Water	
Aluminum 237.312 [Radial]	C01,C02
Aluminum 394.401 [Radial]	C01,C02
Aluminum 396.152 [Radial]	C01,C02
Antimony 206.833 [Axial]	C01,C02
Arsenic 193.759 [Axial]	C01,C02
Barium 455.403 [Radial]	C01,C02
Barium 493.409 [Radial]	C01,C02
Beryllium 313.042 [Axial]	C01,C02
Boron 249.773 [Radial]	C01,C02
Cadmium 228.802 [Axial]	C01,C02
Calcium 315.887 [Radial]	C01,C02
Chromium 283.563 [Axial]	C01,C02
Cobalt 228.616 [Axial]	C01,C02
Copper 324.754 [Axial]	C01,C02
Iron 259.940 [Axial]	C01,C02
Iron 259.940 [Radial]	C01,C02
Lead 220.353 [Axial]	C01,C02
Lithium 610.362 [Axial]	C01,C02
Magnesium 285.213 [Radial]	C01,C02
Manganese 257.610 [Axial]	C01,C02
Molybdenum 202.030 [Axial]	C01,C02
Nickel 231.604 [Axial]	C01,C02
Potassium 766.490 [Radial]	C01,C02
Phosphorus 178.284 [Axial]	C01,C02
Phosphorus 178.284 [Radial]	C01,C02
Selenium 196.090 [Axial]	C01,C02
Silver 328.068 [Axial]	C01,C02
Sodium 589.592 [Axial]	C01,C02
Sodium 589.592 [Radial]	C01,C02
Strontium 346.446 [Radial]	C01,C02
Strontium 421.552 [Radial]	C01,C02
Thallium 190.856 [Axial]	C01,C02
Tin 189.989 [Axial]	C01,C02
Titanium 334.941 [Axial]	C01,C02
Vanadium 309.311 [Axial]	C01,C02
Zinc 213.856 [Axial]	C01,C02
EPA 200.8 Rev 5.4 in Water	
Aluminum [He]	C01,C02
Antimony [He]	C01,C02
Antimony [HHe]	C01,C02
Antimony [NG]	C01,C02

Choctaw Generation LP 2391 Pensacola Rd. Ackerman MS, 39735		Project: CGLP CCR Semi Annual Project Number: [none] Project Manager: Jim Ward	Reported: 04/27/2022 10:15
Arsenic [He]	C01,C02		
Arsenic [HHe]	C01,C02		
Aragnia [NC]	004 000		

Arsenic [HHe]	C01,C02
Arsenic [NG]	C01,C02
Barium [He]	C01,C02
Beryllium [He]	C01,C02
Boron [NG]	C01,C02
Cadmium [He]	C01,C02
Cadmium [HHe]	C01,C02
Cadmium [NG]	C01,C02
Chromium [He]	C01,C02
Cobalt [He]	C01,C02
Copper [He]	C01,C02
Copper [NG]	C01,C02
Iron [He]	C01,C02
Lead [He]	C01,C02
Lead [NG]	C01,C02
Manganese [He]	C01,C02
Molybdenum [He]	C01,C02
Nickel [He]	C01,C02
Selenium [He]	C01,C02
Selenium [HHe]	C01,C02
Selenium [NG]	C01,C02
Silver [He]	C01,C02
Silver [NG]	C01,C02
Strontium [He]	C01,C02
Thallium [He]	C01,C02
Vanadium [He]	C01,C02
Zinc [He]	C01,C02

SM 2540 C-2011 in Water

Total Dissolved Solids C01,C02

^{**}Only compounds included in this list are associated with accredited analyses**

Project: CGLP CCR Semi Annual

Project Number: [none]
Project Manager: Jim Ward

Reported: 04/27/2022 10:15

Laboratory Accreditations/Certifications

Code	Description	Number	Expires
C01	LA Environmental Lab Accreditation Program	01960	06/30/2022
C02	The NELAC Institute (NELAP)	TNI01397	06/30/2022
C03	Ms Dept of Health (Drinking Water Microbiology)	MS00021	12/31/2022
C04	Ms Dept of Health (Drinking Water Chemistry)	MS00021	12/31/2022
C05	Ms DEQ Lead Firm Certification	PBF-00000028	03/24/2023
C06	MsDEQ Asbestos Inspector : C.D. Bingham	ABI-00001348	02/12/2023
C07	MsDEQ Air Monitor : C.D. Bingham	AM-011572	02/13/2023
C08	MsDEQ Asbestos Inspector: C. W. Meins	ABI-00001821	09/09/2022
C09	MsDEQ Air Monitor: C.W. Meins	AM-011189	02/13/2023
C14	MsDEQ Lead Paint Inspector : C.D. Bingham	PBI-00003690	01/29/2023
C15	MsDEQ Lead Paint Inspector : C.W. Meins	PBI-00001740	01/29/2023

Report Definitions

TNC DET ND NR	Too Numerous To Count Analyte DETECTED Analyte NOT DETECTED at or above the minimum reporting limit Not Reported
RPD ICV	Relative Percent Difference Initial Calibration Verflication
CCV	Continuing Calibration Verification Standard
SSV	Secondary Source Verfication Standard
LCS	Lab Control Spike - Lab matrix prepared with known concentration of analyte/s of interest analyzed by method.
MS	Matrix Spike - Sample prepared with known concentration of analyte/s of interest analyzed by method.
MSD	Matrix Spike Duplicate - Duplicate sample prepared with known concentration of analyte/s of interest analyzed by method.
MRL	Minimum Reporting Limit
%REC	Percentage Recovery of known concentration added to matrix
Batch	Group of samples prepared for analysis not to exceed 20 samples.
Matrix	Material containing analyte/s of interest
Surrogate	Analyte added to sample to determine extraction efficiency of method.

Choctaw Generation LP Project: CGLP CCR Semi Annual

2391 Pensacola Rd. Project Number: [none] Reported:
Ackerman MS, 39735 Project Manager: Jim Ward 04/27/2022 10:15

Analyst Initials Key

<u>FullName</u>	<u>Initials</u>
Charles L Vorhoff	CLV
Dortha L. Wells	DLW
Sarah E. Tomek	SET
Samantha C. Hall	SCH
Stella S Kleist	SSK
Teresa Meins	TKM
Tina Tomek	TPT

PO Box 1410, Ocean Springs, MS 39566-1410 (228) 875-6420 FAX (228) 875-6423 www.micromethodslab.com

Chain of Custody Record

Lab ID# MS00021 LELAP ID # 01960 TNI ID # TNI01397

2/1/2/1/17/

WO#	WO#	WO# 2003	wo # 220347C	101397	01960	00021	
WO#	WO# 2	WO# 220	WO# 220347C				
WO#	WO# 1	WO# 200	WO# 220347C				
	22	2000	2203470			WO#	V-V
	2	203	103470	7)
73	T			-	1	_	

	iited Partnership LL		Project Manager:	anager	7			Jim Ward	Ward	"			Tur	n Aro mal turr	Turn Around Time & Reporting Our normal turn around time is 10 working days	orting king days
ess: 2391 Pensac		τ	Purchase Order #	Order	<u>*</u> *								Wormal	*	*All rush order	Phone
City: Ackerman State: MS	^{Zip:} 39735	Е	5 2 Man	ddress:	404	6	27.	300	Comp.	he	ナ		Next Day* 2nd Day*	, le	requests must be	Mail
Phone: 662-387-5758		S	Sampler	Name Printed	inte	I	/	,	T	3 m	A S	RINE	_Other*	1	200 C	Email
Fax:		S	Sampler Name Signed:	Name S	No.	A		-	1	B	49		QC Level: Level 1	_	Level 2ev	evel 3
					List	List Analyses Requested	yses	Requ	este	9		170	Fiel	Field Testing	sting	
oroject Name: CGLP	CCR	🖸	servat	7 8	le,	ic	m		+		&		Field Test Field	Test Fie	ID# Id Test Field Test	Matrix: W = Water
^{Project #:} Semi-Annual	nnual	ontaine		DS	le, Fluorio Sulfate	ny, Arser	Boron, Berylliu um, Chromiun	Calcium	hium	bendum,	dium 226 228					DW = Drinking Water
Sample Identification	Sampling M Date/Time C	Matrix Code	Grab (Chloric					Moly					10 10 U	SO = Soil SE = Sediment
6-AW	3/e3/12 14:35	8	_		×	×	×	×	\times	$\stackrel{\wedge}{\smile}$	$\stackrel{\frown}{\times}$					L = Liquid
OW-2	12/21 11:20	8	4 G	<u>.</u>	$\stackrel{\frown}{\times}$	\times	X	X	X	X	X					A = Air O = Oil
MW-13	3/24/22 11:10	8	4 G	×	X	×	\times	X	X	×	×				S	SL = Sludge
MW-7	3/24/22 IS:20	8	4 G	 V	×	×	×	×	X	$\stackrel{\wedge}{\checkmark}$	×					
MW-14	44:81 22 Hets	8	4 G	, , , , , , , , , , , , , , , , , , ,	×	X	×	X	X	V	X					
Field Blank	3/24/22 13:54	8	4 G	×	X	×	×	X	X	X	X					Preservation:
Duplicate	4	8	4 G	 ×	X	X	×	X	X	\(\frac{\dagger}{\dagger}\)	×			_		1= H2504 2= H3PO4
MW-12	85:01 22/Ec/E	8	4 G	 Y	X	X	X	X	X	×	X				143	3=NaOH
CCR-2	3/23/22 13:32	8	4 G	×	×	×	×	X	X	×	X					4=ZnC4H10O6 &
CCR-3	3/23/22 15:52	8	4 G		X	X	\times	X	X	×	X					NaOH
CCR-4	3/23/22/6:5	8	4 G	 ×	×	X	\times	X	X	X	×					6=HNO3
Received on Ice YVN Thermometer#	15	Cooler #		Rece	Receipt Temp Corrected(°C	mp C	orrec	ted(°	D						8.	/=NaZSZU3 8=HCl
Date & TimeBy:	Y			Sample	ole	Bla	Blank	00)	Cooler_		<u>)</u>		**All Temps are Corrected Values**	Correct		9=NaHSO4
Printed Name	ame		Signature	Te e		180	Company	any	Date	te	Time	Ф	Notes:	1		
Relinquished by Kowk Shall	ion 1	NA	El			m	S		N	24/2	2/8	8	COOKY# 400	#		0.10
Received by Fed Fx		4				+			1		+	1	Contor #	μ.		2.4.0
Relinquished by n FRQ.Ex	7	1	1/	5		9						1	Cooler !	- (2
Received by 800000 T	THINK &	M	M	M	M		R	M	12	225	08	8	COOK # 418	7		0,10
Relinquished by																
Received by						4										

Physical Address: 6500 Sunplex Drive, Ocean Springs MS 39564

PO Box 1410, Ocean Springs, MS 39566-1410 (228) 875-6420 FAX (228) 875-6423 www.micromethodslab.com

Chain of Custody Record

Lab ID# MS00021 LELAP ID # 01960 TNI ID # TNI01397

Print Form

M-M Lab 2203476

Company Name: Choctaw Generation Limited Partnership LLLP	d Partnership LLLP	Project Manager:	Jim	Jim Ward	Turn Around Time & Reporting Our normal turn around time is 10 working days	e & Reporting
Address: 2391 Pensacola Rd.		Purchase Order #:			Normal *All rush order	der Phone
City: Ackerman State: MS	^{Zip:} 39735	Email Andress:	6 Chuicoca	nonet	y* n	ist beMail
Phone: 662-387-5758		Sampler Name Print	ton / ETHA	JEASTERLING		Email
Fax:		Sample Name Signed	led: / SCS	Y	QC Level: Level 1 Level 2	Level 3
A STATE OF THE PERSON OF THE P	174 - 2015 P. C. S. S.		List Analyses Requested	(ested)	Field Testing	
Project Name: CGLP CCR	CR	servative:	m		Field Test Field Test Field Test	# Matrix: eld Test W = Water
Project #: Semi-Annual	nual	ontaine G) or osite (C DS e, Fluoric	Gulfate ny, Arser Boron, Beryllik Jan, Chromiun Calcium	hium bendum, elenium adium 226 228		DW = Drinking Water
Sample Identification	Sampling Matrix Date/Time Code	# of C Grab Comp	Antimo Barium,	Lit Moly Se		SO = Soil SE = Sediment
CCR-5	M LS:21 22/hZ/	\vdash	× × ×	× × ×		L = Liquid A = Air
						0 = 0il SL = Sludge
						Preservation:
						1= H2SO4 2= H3PO4
	и					3=NaOH
						5=ZnC4H1006 &
						NaOH 6=HNO3
Received on Ice? Y N Thermometer#_	Cooler #		Receipt Temp Corrected(°C)	C		8=HCl
Date & TimeBy:		Sample	Blank Co	_ooler	**All Temps are Corrected Values**	
Printed Name	е	Signature	Company	Date Time	Notes:	
Relinquished by	ton M	ARI	Ecs	3/24/2 18-	O	
Received by Fed SX	1	0				
Relinquished by	-	9			1	
Received by XWWM 10	Mek BN	and the	mm y	3/25/22 /28/	8	
Relinquished by	1	C		,		
Received by						

Physical Address: 6500 Sunplex Drive, Ocean Springs MS 39564

April 26, 2022

Tina Tomek Micro-Methods Lab 6500 Sunplex Drive Ocean Springs, MS 39564

RE: Project: 2203470

Pace Project No.: 30478948

Dear Tina Tomek:

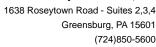
Enclosed are the analytical results for sample(s) received by the laboratory on April 01, 2022. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Greensburg

If you have any questions concerning this report, please feel free to contact me.

Sincerely,


David A. Pichette david.pichette@pacelabs.com (724)850-5617 Project Manager

trul Politic

Enclosures

cc: Accounts Payable, Micro-Methods Lab

CERTIFICATIONS

Project: 2203470
Pace Project No.: 30478948

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734 Arkansas Certification

California Certification #: 04222CA
Colorado Certification #: PA01547
Connecticut Certification #: PH 0604

Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET

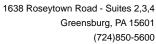
Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235
Montana Certification #: Cert0082
Nebraska Certification #: NE-OS-29-14
Nevada Certification #: PA014572018-1
New Hampshire/TNI Certification #: 297617
New Jersey/TNI Certification #: PA051
New Mexico Certification #: PA01457
New York/TNI Certification #: 10888
North Carolina Certification #: 42706
North Dakota Certification #: R-190


Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification
Tennessee Certification #: 02867

Ohio EPA Rad Approval: #41249

Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 460198 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C

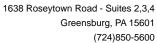
Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

SAMPLE SUMMARY

Project: 2203470
Pace Project No.: 30478948

Lab ID	Sample ID	Matrix	Date Collected	Date Received
30478948001	2203470-01	Water	03/23/22 14:35	04/01/22 09:55
30478948002	2203470-02	Water	03/23/22 11:20	04/01/22 09:55
30478948003	2203470-03	Water	03/23/22 11:10	04/01/22 09:55
30478948004	2203470-04	Water	03/24/22 15:20	04/01/22 09:55
30478948005	2203470-05	Water	03/24/22 13:44	04/01/22 09:55
30478948006	2203470-06	Water	03/24/22 13:54	04/01/22 09:55
30478948007	2203470-07	Water	03/23/22 00:00	04/01/22 09:55
30478948008	2203470-08	Water	03/23/22 10:58	04/01/22 09:55
30478948009	2203470-09	Water	03/23/22 13:32	04/01/22 09:55
30478948010	2203470-10	Water	03/23/22 15:52	04/01/22 09:55
30478948011	2203470-11	Water	03/23/22 16:55	04/01/22 09:55
30478948012	2203470-12	Water	03/24/22 12:17	04/01/22 09:55

(724)850-5600

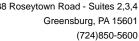


SAMPLE ANALYTE COUNT

Project: 2203470
Pace Project No.: 30478948

Lab ID	Sample ID	Method	Analysts	Analytes Reported
30478948001	2203470-01	EPA 903.1	RPS	1
		EPA 904.0	JSM	1
30478948002	2203470-02	EPA 903.1	RPS	1
		EPA 904.0	JSM	1
30478948003	2203470-03	EPA 903.1	RPS	1
		EPA 904.0	JSM	1
30478948004	2203470-04	EPA 903.1	RPS	1
		EPA 904.0	JSM	1
30478948005	2203470-05	EPA 903.1	RPS	1
		EPA 904.0	JSM	1
30478948006	2203470-06	EPA 903.1	RPS	1
		EPA 904.0	JSM	1
30478948007	2203470-07	EPA 903.1	RPS	1
		EPA 904.0	JSM	1
30478948008	2203470-08	EPA 903.1	RPS	1
		EPA 904.0	JSM	1
30478948009	2203470-09	EPA 903.1	RPS	1
		EPA 904.0	JSM	1
30478948010	2203470-10	EPA 903.1	RPS	1
		EPA 904.0	JSM	1
30478948011	2203470-11	EPA 903.1	RPS	1
		EPA 904.0	JSM	1
30478948012	2203470-12	EPA 903.1	RPS	1
		EPA 904.0	JSM	1

PASI-PA = Pace Analytical Services - Greensburg


ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: 2203470 Pace Project No.: 30478948

Sample: 2203470-01 PWS:	Lab ID: 30478 Site ID:	948001 Collected: 03/23/22 14:35 Sample Type:	Received:	04/01/22 09:55 N	Matrix: Water	
-			L La Sta	A b	040 N=	0
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	•	services - Greensburg				
Radium-226	EPA 903.1	0.488 ± 0.415 (0.583) C:NA T:83%	pCi/L	04/26/22 14:12	13982-63-3	
	Pace Analytical S	ervices - Greensburg				
Radium-228	EPA 904.0	1.53 ± 0.565 (0.846) C:67% T:83%	pCi/L	04/19/22 12:57	15262-20-1	
Sample: 2203470-02	Lab ID: 30478	948002 Collected: 03/23/22 11:20	Received:	04/01/22 09:55 N	Matrix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical S	Services - Greensburg				
Radium-226	EPA 903.1	0.000 ± 0.240 (0.489) C:NA T:84%	pCi/L	04/26/22 14:12	13982-63-3	
	Pace Analytical S	Services - Greensburg				
Radium-228	EPA 904.0	0.292 ± 0.498 (1.08) C:70% T:84%	pCi/L	04/19/22 16:10	15262-20-1	
Sample: 2203470-03	Lab ID: 30478	948003 Collected: 03/23/22 11:10	Received:	04/01/22 09:55 N	Matrix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical S	Services - Greensburg		•		
Radium-226	EPA 903.1	0.204 ± 0.401 (0.720) C:NA T:84%	pCi/L	04/26/22 14:12	13982-63-3	
	Pace Analytical S	Services - Greensburg				
Radium-228	EPA 904.0	0.497 ± 0.473 (0.982) C:84% T:84%	pCi/L	04/19/22 16:10	15262-20-1	
Sample: 2203470-04	Lab ID: 30478		Received:	04/01/22 09:55 N	Matrix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical S	Services - Greensburg				
Radium-226	EPA 903.1	0.322 ± 0.395 (0.648) C:NA T:83%	pCi/L	04/26/22 14:12	13982-63-3	
	Pace Analytical S	ervices - Greensburg				
Radium-228	EPA 904.0	0.167 ± 0.371 (0.822)	pCi/L	04/19/22 16:05	15262 20 1	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

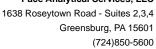
ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: 2203470
Pace Project No.: 30478948

Sample: 2203470-05 PWS:	Lab ID: 304789 4 Site ID:	18005 Collected: 03/24/22 13:44 Sample Type:	Received:	04/01/22 09:55	Matrix: Water	
-			11.2		0404	
Parameters —	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	•	rvices - Greensburg				
Radium-226	EPA 903.1	0.0476 ± 0.217 (0.442) C:NA T:87%	pCi/L	04/26/22 14:12	2 13982-63-3	
	Pace Analytical Se	rvices - Greensburg				
Radium-228	EPA 904.0	0.402 ± 0.371 (0.759) C:78% T:87%	pCi/L	04/19/22 16:05	5 15262-20-1	
Sample: 2203470-06	Lab ID: 3047894		Received:	04/01/22 09:55	Matrix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Se	rvices - Greensburg				
Radium-226	EPA 903.1	0.138 ± 0.298 (0.551) C:NA T:90%	pCi/L	04/26/22 14:12	2 13982-63-3	
	Pace Analytical Se	rvices - Greensburg				
Radium-228	EPA 904.0	0.319 ± 0.360 (0.756) C:73% T:90%	pCi/L	04/19/22 16:05	5 15262-20-1	
Sample: 2203470-07	Lab ID: 3047894	18007 Collected: 03/23/22 00:00	Received:	04/01/22 09:55	Matrix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Se	rvices - Greensburg				
Radium-226	EPA 903.1	0.322 ± 0.374 (0.604) C:NA T:88%	pCi/L	04/26/22 14:22	2 13982-63-3	
	Pace Analytical Se	rvices - Greensburg				
Radium-228	EPA 904.0	0.445 ± 0.403 (0.826) C:78% T:88%	pCi/L	04/19/22 16:05	5 15262-20-1	
Sample: 2203470-08	Lab ID: 3047894	18008 Collected: 03/23/22 10:58	Received:	04/01/22 09:55	Matrix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Se	rvices - Greensburg				
Radium-226	EPA 903.1	0.151 ± 0.297 (0.543) C:NA T:78%	pCi/L	04/26/22 14:34	13982-63-3	
	Pace Analytical Se	rvices - Greensburg				
Radium-228	EPA 904.0	0.425 ± 0.428 (0.887)	pCi/L	04/19/22 16:05	5 15262-20-1	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.


ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: 2203470
Pace Project No.: 30478948

Sample: 2203470-09 PWS:	Lab ID: 30478948 Site ID:	6009 Collected: 03/23/22 13:32 Sample Type:	Received:	04/01/22 09:55	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
- I didiliciois			Offits		_ CAS NO.	Quai
Dading 000	Pace Analytical Serv EPA 903.1	· ·	·· O: //	0.4/0.0/0.0.4.4.0.4	4 40000 00 0	
Radium-226	EPA 903. I	0.382 ± 0.441 (0.716) C:NA T:94%	pCi/L	04/26/22 14:34	1 13982-63-3	
	Pace Analytical Serv	ices - Greensburg				
Radium-228	EPA 904.0	0.749 ± 0.389 (0.686) C:76% T:94%	pCi/L	04/19/22 16:05	5 15262-20-1	
Sample: 2203470-10	Lab ID: 30478948		Received:	04/01/22 09:55	Matrix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Serv	ices - Greensburg				
Radium-226	EPA 903.1	0.466 ± 0.294 (0.126) C:NA T:86%	pCi/L	04/26/22 14:34	1 13982-63-3	
	Pace Analytical Serv	ices - Greensburg				
Radium-228	EPA 904.0	1.03 ± 0.461 (0.764) C:75% T:86%	pCi/L	04/19/22 16:05	5 15262-20-1	
Sample: 2203470-11	Lab ID: 30478948	2011 Collected: 03/23/22 16:55	Received:	04/01/22 09:55	Matrix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Serv	ices - Greensburg				
Radium-226	EPA 903.1	0.739 ± 0.407 (0.363) C:NA T:85%	pCi/L	04/26/22 14:34	1 13982-63-3	
	Pace Analytical Serv	ices - Greensburg				
Radium-228	EPA 904.0	0.243 ± 0.396 (0.860) C:76% T:85%	pCi/L	04/19/22 16:05	5 15262-20-1	
Sample: 2203470-12	Lab ID: 30478948	012 Collected: 03/24/22 12:17	Received:	04/01/22 09:55	Matrix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Serv	ices - Greensburg				
Radium-226	EPA 903.1	0.174 ± 0.488 (0.810) C:NA T:81%	pCi/L	04/26/22 14:34	1 13982-63-3	
	Pace Analytical Serv	ices - Greensburg				
Radium-228	EPA 904.0	1.30 ± 1.48 (3.11) C:78% T:81%	pCi/L	04/19/22 16:05	5 15262-20-1	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALITY CONTROL - RADIOCHEMISTRY

Project: 2203470
Pace Project No.: 30478948

QC Batch: 496268 Analysis Method: EPA 904.0

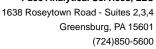
QC Batch Method: EPA 904.0 Analysis Description: 904.0 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 30478948001, 30478948002, 30478948003, 30478948004, 30478948005, 30478948006, 30478948007,

30478948008, 30478948009, 30478948010, 30478948011, 30478948012

METHOD BLANK: 2401680 Matrix: Water


Associated Lab Samples: 30478948001, 30478948002, 30478948003, 30478948004, 30478948005, 30478948006, 30478948007,

30478948008, 30478948009, 30478948010, 30478948011, 30478948012

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.477 ± 0.322 (0.615) C:81% T:88%
 pCi/L
 04/19/22 12:57

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project: 2203470
Pace Project No.: 30478948

QC Batch: 496267 Analysis Method: EPA 903.1

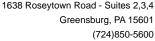
QC Batch Method: EPA 903.1 Analysis Description: 903.1 Radium-226

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 30478948001, 30478948002, 30478948003, 30478948004, 30478948005, 30478948006, 30478948007,

30478948008, 30478948009, 30478948010, 30478948011, 30478948012

METHOD BLANK: 2401679 Matrix: Water


Associated Lab Samples: 30478948001, 30478948002, 30478948003, 30478948004, 30478948005, 30478948006, 30478948007,

30478948008, 30478948009, 30478948010, 30478948011, 30478948012

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.0478 ± 0.218 (0.444) C:NA T:88%
 pCi/L
 04/26/22 13:58

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 2203470
Pace Project No.: 30478948

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Act - Activity

Date: 04/26/2022 05:02 PM

Unc - Uncertainty: For Safe Drinking Water Act (SDWA) analyses, the reported Unc. Is the calculated Count Uncertainty (95% confidence interval) using a coverage factor of 1.96. For all other matrices (non-SDWA), the reported Unc. is the calculated Expanded Uncertainty (aka Combined Standard Uncertainty, CSU), reported at the 95% confidence interval using a coverage factor of 1.96.

Gamma Spec: The Unc. reported for all gamma-spectroscopy analyses (EPA 901.1), is the calculated Expanded Uncertainty (CSU) at the 95.4% confidence interval, using a coverage factor of 2.0.

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

WO#: 30478948

LABORATORY	CINC.	
Mero-Methods Laboratory, Inc. 6500 Sunplex Drive Ocean Springs, MS 39564 Phote: 228.875.6420 Fax 228.875.6423	Pace Analytical-7 1638 Roseytown Rd. Suites 2, 3, 4 Greensburg, PA 15601 Phone: (724) 850-5600 Fax: -	
Project Manager: Teresa Meins	* Choctaw Generati	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
ork order: 2203470	Expires Comments	
nalysis Due ample ID: 2203470-01 <i>Water Sampled: 03/23/202</i>		001
	0/2022 14:35	
ampleID: 2203470-02 Water Sampled: 03/23/202	22 11:20 Sample Name: OW-2	002
edium, otal 226 & 228 by EPA 903.1 & 90 04/04/2022 04/20 Intaines Supplied: 1000mL Plastic w/HNO3 (A) 1000mL Plastic w/HNO3 (B)	0/2022 11:20	
mp e ID: 2203470-03 Water Sampled: 03/24/202	22 11:10 Sample Name: MW-13	003
adium, otal 226 & 228 by EPA 903.1 & 90 04/04/2022 04/2 Intainels Supplied: 1000mL Plastic w/HNO3 (A) 1000mL Plastic w/HNO3 (B)	1/2022 11:10	
ample ID: 2203470-04 Water Sampled: 03/24/20.	22 15:20 Sample Name: MW-7	00u
adium, otal 226 & 228 by EPA 903.1 & 90 04/04/2022 04/2 ontainers Supplied: 1000mL Plastic w/HNO3 (A) 1000mL Plastic w/HNO3 (B)	1/2022 15:20	5.07
ampe ID: 2203470-05 Water Sampled: 03/24/20	22 13:44 Sample Name: MW-14	005
Smah Jonep 3/29/22 1630	21/2022 13:44 WS 3/24/22 P 10 Received By Date	<i>630</i>
eleased By (/) Date Date Date	Received By Date	229
eleased By Date Date Date	Received By Date Received By Date	

Page 1 of 3

Received By

Date

Released By

Date

WO#: 30478948

PM: DAP

Due Date: 04/22/22

Page 45 of 49

CLIENT: MICROMETHOD

Worl	C	þr	der: 2203470 (Continued)	
Analy	şi	9	Due Expires Comments	
			jupplied: stic w/HNO3 (A) 1000mL Plastic w/HNO3 (B)	
Samp	e	10	: 2203470-06 Water Sampled: 03/24/2022 13:54 Sample Name: Field Blank	<u> </u>
Radiun	W,	ota	1 226 & 228 by EPA 903.1 & 90 04/04/2022 04/21/2022 13:54	·
			upplied: stic w/HNO3 (A) 1000mL Plastic w/HNO3 (B)	
Samp	9	ΙC	: 2203470-07 Water Sampled: 03/23/2022 00:00 Sample Name: Duplicate	007
Radiur	η,	ot	1 226 & 228 by EPA 903.1 & 90 04/04/2022 04/20/2022 00:00	
			tic w/HNO3 (A) 1000mL Plastic w/HNO3 (B)	
Samp	9	TC	: 2203470-08 Water Sampled: 03/23/2022 10:58 Sample Name: MW-12	208_
	Ш	8	al 226 & 228 by EPA 903.1 & 90 04/04/2022 04/20/2022 10:58	
Contain 1000r	re. 1L	r S Pla	tupplied: stic w/HNO3 (A) 1000mL Plastic w/HNO3 (B)	-2 (2)(3)
Samp	Θ	IL	: 2203470-09 Water Sampled: 03/23/2022 13:32 Sample Name: CCR-2	009
Radiur	1,1	Cot	at 226 & 228 by EPA 903.1 & 90 04/04/2022 04/20/2022 13:32	
			tic w/HNO3 (A) 1000mL Plastic w/HNO3 (B)	
Samp	le	IL	: 2203470-10 Water Sampled: 03/23/2022 15:52 Sample Name: CCR-3	<u>900</u>
Radiur	1	ot	al 226 & 228 by EPA 903.1 & 90 04/04/2022 04/20/2022 15:52	
			upplied: stic w/HNO3 (A) 1000mL Plastic w/HNO3 (B)	
Samp	le	TC	: 2203470-11 Water Sampled: 03/23/2022 16:55 Sample Name: CCR-4	011
	Ш		at 226 & 228 by EPA 903.1 & 90 04/04/2022 04/20/2022 16:55	
	ш	Į	upplied: stic w/HNO3 (A) 1000mL Plastic w/HNO3 (B)	- duo -
Samp	ie	IC	9: 2203470-12 Water Sampled: 03/24/2022 12:17 Sample Name: CCR-5	012
SW	V		Momen 3/29/22 P 1630 UPS 3/29/22 P14	<u> 30 </u>
Release	ď	Ву	Date Received By Date	L 91.65
Release	d	Ву	Date Received By Date	
Release	d	Ву	Date Received By Date	
Release	1	Вy	Date Received By Date	
Release	a	Вy	Date Received By Date	
·			Page 2 of 3	
		1		45 of 40

WO#: 30478948

PM: DAP

Due Date: 04/22/22

Page 46 of 49

CLIENT: MICROMETHOD

Work	. ())r	der: 2203470) (Cont	inued)					
Analy	1				Due	Expire	s Comments			
		1	: 2203470-12	Water .	Sampled: 0	3/24/2022 12:	:17 Sample Name:	CCR-5		
Radiun	1	bta	I 226 & 228 by EPA	903.1 & 90	04/04/20	22 04/21/2022	12:17			
Contair 1000n	er L	s S Plas	upplied: ttc w/HNO3 (A) 100	OmL Plastic	w/HNO3 (B)		Alternative Control of the Control o			
Salazz	z		h Jamel	3/2	0/220 Date	1630	Received By	3/29/220	Date	
Release	u	PY	MŠ		Bato		2 Ad	101 / -	ا الم	72 9:65
Release	a	Ву			Date		Received By		Date	
Release	a	Ву			Date	<u> </u>	Received By		Date	
Release	-	Зу			Date		Received By		Date	<u> </u>
Release	adi	Ву			Date		Received By		Date	

Page 3 of 3

Pittsburgh Lab Sample Condition Upon Receipt Client Name: Micro-Methods Project # Courier: Fed Ex VUPS USPS Client Commercial Pace Other Label 🞾 Tracking #: 12 353 063 03 6858 1762 Seals intact: no no Thermometer Used Type of Ice: Wet Blue Correction Factor: C Final Temp: **Observed Temp** Cooler Temperature Temp should be above freezing to 6°C pH paper Lot# Date and Initials of person examining contents: 47-22 10 Daril Yes No N/A Comments: Chain of Custody Present: Chain of Custody Filled Out: Chain of Custody Relinquished: Sampler Name & Signature on COC: Sample Labels match COC: Matrix:__W -Includes date/time/ID Samples Arrived within Hold Time: Short Hold Time Analysis (<72hr remaining): CLIENT: MICROMETHOD Rush Turn Around Time Requested: 8. Sufficient Volume: Correct Containers Used: 10. -Pace Containers Used: Containers Intact: 11. Due Date: 04/22/22 Orthophosphate field filtered 12. 13. Hex Cr Aqueous sample field filtered Organic Samples checked for dechlorination: 14. Filtered volume received for Dissolved tests 15. All containers have been checked for preservation. PHLA exceptions: VOA, coliform, TOC, O&G, Phenolics, Radon, Non-aqueous matrix All containers meet method preservation Initial when Date/time of requirements. completed preservation Lot # of added preservative Headspace in VOA Vials (>6mm): 17. 18. Trip Blank Present: Trip Blank Custody Seals Present Rad Samples Screened < 0.5 mrem/hr Initial when completed:

Person Contacted: _____ Date/Time: ____ Contacted By:

Comments/ Resolution: _____

 \square A check in this box indicates that additional information has been stored in ereports.

Client Notification/ Resolution:

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

#:30478948

FNV-FRM-GRIR-0072 00 290ac2020

Pace Greensburg Lab -Sample Container Count WO#:30478948

PM: DAP Due C CLIENT: MICROMETHOD

Micro-methods

Client

2203470

Site

Pace Analytical ®

Due Date: 04/22/22

Ċ. BP1N

Besn

Bein

AG5T

NGDA NEDA

YG38

NZSA

TIĐA

SFDA

HrəA

Matrix

Sample Line Item

N (r) 4

Profile Number 14460

		•
		. ;
1 1 1 1 1 1	١	Ì,
ì		

	٠
ഗ	
Œ,	
۳,	
ᆖ	
$\overline{}$	
J	
-	

SPLC

Mekn

WGFU

NOOK					
UGĐV					
T65V					
Н6⋻∧					
ecne					
DG98					
UE9B					
8648					
ВРЗИ					
ЭЕНВ					
US48					,
SP2S					
UMB					

tic	ΙZΞ	VOAK	_	ZPLC		LΜ	ПS	٦ ا	MΡ		
Plastic										,	
Р	GCUB 1 Gallon Cubitainer	12GN 1/2 Gallon Cubitainer	120mL Coliform Na Thiosulfate	BP1N 1L plastic HNO3	1L plastic unpreserved	250mL plastic H2SO4	BP3N 250mL plastic HNO3	250mL plastic unpreserved	250ml plastic NAOH	500mL plastic H2SO4	COL
	GCUB	12GN	SP5T	BP1N	BP1U	BP3S	BP3N	BP3U	врзс	BP2S	

500mL amber glass unpreserve

8oz wide jar unpreserved

WGKU

250mL amber glass unpreserved

250mL amber glass H2SO4 L clear glass unpreserved

AG3S

AG3U

AG2U

BG2U

L amber glass Na Thiosulfate

500mL clear glass unpreserved

4oz wide jar unpreserved

WGFU

40mL clear VOA vial Na Thiosu

40mL clear VOA vial

VG9U

10mL clear VOA vial HCl

VG9H

VG9T

00mL amber glass Na Thiosulfate

00mL amber glass unprserved

AG5U

SIN

AG5T

Gallon Jug with HNO3

foz amber wide jar

JGFU

L amber glass H2SO4

Gallon Jug

GUN

L amber glass HCI

AG1H AG1S

AG1T BG1U

40mL amber VOA vial H2SO4

DG9S

Glass

Container Codes

<u>-</u> 2

42

10 Ξ

 ∞ တ

S ဖ

Pla	Plastic / Misc.	Misc.
1 Gallon Cubitainer	EZI	5g Encore
1/2 Gallon Cubitainer	VOAK	Kit for Volatile Solid
120mL Coliform Na Thiosulfate		Wipe/Swab
1L plastic HNO3	ZPLC	Ziploc Bag
1L plastic unpreserved		
250mL plastic H2SO4	WT	Water
250mL plastic HNO3	SL	Solid
250mL plastic unpreserved	占	Non-aqueous liquid
250ml plastic NAOH	WP	Wipe
500mL plastic H2SO4	i	
500mL plastic unpreserved		

Page 48 of 49

David Pichette

From:

Tina Tomek <ttomek@micromethodslab.com>

Sent:

Thursday, April 7, 2022 3:06 PM

To:

David Pichette

Subject:

RE: Samples at Pace Greensburg

Attachments:

2203470.pdf

CAUTION: This email originated from outside Pace Analytical. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Dave

As per your request, attached is a copy of the CoC. Please let me know if you need further information.

Thank you

Tina P Tomek

Office Manager Micro-Methods Lab Remit to: P O Box 1410

Ocean Springs, MS 39566-1410

Physical: 6500 Sunplex Drive

Ocean Springs, Mississippi 39564

228-875-6420 Fax 228-875-6423

www.micromethodslab.com

WO#: 30478948

PM: DAP

Due Date: 04/22/22

CLIENT: MICROMETHOD

This email may contain material that is confidential, privileged and/or attorney work product for the sole use of the intended recipient. Any review, reliance or distribution by others or forwarding without express permission is strictly prohibited. If you are not the intended recipient, please contact the sender and delete all copies.

Attention: This email message is intended solely for the addressee(s) named and should be considered confidential. If you are not the intended recipient please delete the message and notify the sender. Please be advised that any views or opinions presented are solely those of the author

Help us improve our service. Take our survey at: MicroMethods Client Survey

From: David Pichette [mailto:David.Pichette@pacelabs.com]

Sent: Thursday, April 7, 2022 1:38 PM

To: Tina Tomek

Subject: Samples at Pace Greensburg

Hi Tina,

We received sample in Greensburg without a COC. There is a box of them, the sample ID is 2203470. Can you provide some assistance please?

Thanks,

Dave

David A. Pichette

Project Manager | Environmental Sciences 1638 Roseytown Road, Suites 2, 3, & 4, Greensburg, PA 15601

Mailing Address: PO Box 1410 Ocean Springs, MS 39566-1410

DOCUMENT CHANGE NOTICE

6500 Sunplex Drive Ocean Springs, MS 39564 228.875.6420 Phone 228.875.6423 Fax

Revised Report

January 12, 2023

Jim Ward Work Order #: 2206051

Choctaw Generation LP Purchase Order # RDH16277 - Yr 2022

2391 Pensacola Rd. Ackerman, MS 39735

RE: CGLP CCR Annual

Enclosed is the <u>revised</u> report for samples received by the laboratory on 06/02/2022 08:50. This report supercedes any previous version of the above noted work order. If you have any questions concerning this report, please feel free to contact the office.

Sincerely,

Mitch Spicer

Lab Director

DISCLAIMER

The results only relate to the items or the sample and/or samples received by the laboratory. This report shall not be reproduced except in full, without the approval of the laboratory. All NELAP certified test methods performed meet the requirements of NELAC 2009 Standards. Any variances and/or deviations specific to this analytical report are referenced in the lab report using qualifiers and detailed explanations found in the case narrative.

Choctaw Generation LP 2391 Pensacola Rd. Ackerman MS, 39735 Project: CGLP CCR Annual

Project Number: [none]
Project Manager: Jim Ward

Reported: 01/12/2023 12:00

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date/Time Sampled	Sampled by	Date/Time Received
MW-7	2206051-01	Water	06/01/2022 10:56	Ethan Easterling	06/02/2022 08:50
MW-9	2206051-02	Water	05/31/2022 11:45	Ethan Easterling	06/02/2022 08:50
MW-12	2206051-03	Water	05/31/2022 15:24	Ethan Easterling	06/02/2022 08:50
MW-13	2206051-04	Water	06/01/2022 08:58	Ethan Easterling	06/02/2022 08:50
MW-14	2206051-05	Water	06/01/2022 11:48	Ethan Easterling	06/02/2022 08:50
Field Blank	2206051-06	Water	06/01/2022 11:27	Ethan Easterling	06/02/2022 08:50
Duplicate	2206051-07	Water	06/01/2022 00:00	Ethan Easterling	06/02/2022 08:50
OW-2	2206051-08	Water	05/31/2022 14:00	Ethan Easterling	06/02/2022 08:50
CCR-2	2206051-09	Water	05/31/2022 16:20	Ethan Easterling	06/02/2022 08:50
CCR-3	2206051-10	Water	05/31/2022 10:15	Ethan Easterling	06/02/2022 08:50
CCR-4	2206051-11	Water	05/31/2022 14:53	Ethan Easterling	06/02/2022 08:50
CCR-5	2206051-12	Water	06/01/2022 09:52	Ethan Easterling	06/02/2022 08:50

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

Choctaw Generation LP 2391 Pensacola Rd. Ackerman MS, 39735 Project: CGLP CCR Annual

Project Number: [none]
Project Manager: Jim Ward

Reported: 01/12/2023 12:00

Fed Ex

Samnla	Receint	Conditions

Date/Time Received: 6/2/2022 8:50:00AM Shipped by:

Received by: Sarah E. Tomek Submitted by: Ethan Easterling

Date/Time Logged: 6/3/2022 8:42:00AM Logged by: Sarah E. Tomek

Cooler ID: #1106 Receipt Temperature: 0.3 °C

Yes

Received on Ice but Not Frozen Yes Cooler Custody Seals Present Yes Containers Intact Yes No Ice, Short Trip No COC/Labels Agree Yes **Obvious Contamination** No Labels Complete Yes Rush to meet HT No COC Complete Received within HT Yes Yes Volatile Vial Headspace >6mm Proper Containers for Analysis Yes No Field Sheet/Instructions Included No Correct Preservation Yes Samples Rejected/Documented in Log No Adequate Sample for Analysis Yes Temp Taken From Temp Blank Yes Sample Custody Seals Present Yes Temp Taken From Sample Container Samples Missing from COC/Cooler No No Temp Taken From Cooler No

COC meets acceptance criteria

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

Choctaw Generation LP Project: CGLP CCR Annual

2391 Pensacola Rd. Project Number: [none] Reported:
Ackerman MS, 39735 Project Manager: Jim Ward 01/12/2023 12:00

Cooler Custody Seals Present	Yes	Received on Ice but Not Frozen	Yes
Containers Intact	Yes	No Ice, Short Trip	No
COC/Labels Agree	Yes	Obvious Contamination	No
Labels Complete	Yes	Rush to meet HT	No
COC Complete	Yes	Received within HT	Yes
Volatile Vial Headspace >6mm	No	Proper Containers for Analysis	Yes
Field Sheet/Instructions Included	No	Correct Preservation	Yes
Samples Rejected/Documented in Log	No	Adequate Sample for Analysis	Yes
Temp Taken From Temp Blank	Yes	Sample Custody Seals Present	Yes
Temp Taken From Sample Container	No	Samples Missing from COC/Cooler	No
Temp Taken From Cooler	No		
COC meets acceptance criteria	Yes		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

Choctaw Generation LP Project: CGLP CCR Annual

2391 Pensacola Rd. Project Number: [none] Reported:
Ackerman MS, 39735 Project Manager: Jim Ward 01/12/2023 12:00

		5	V
Cooler Custody Seals Present	Yes	Received on Ice but Not Frozen	Yes
Containers Intact	Yes	No Ice, Short Trip	No
COC/Labels Agree	Yes	Obvious Contamination	No
Labels Complete	Yes	Rush to meet HT	No
COC Complete	Yes	Received within HT	Yes
Volatile Vial Headspace >6mm	No	Proper Containers for Analysis	Yes
Field Sheet/Instructions Included	No	Correct Preservation	Yes
Samples Rejected/Documented in Log	No	Adequate Sample for Analysis	Yes
Temp Taken From Temp Blank	Yes	Sample Custody Seals Present	Yes
Temp Taken From Sample Container	No	Samples Missing from COC/Cooler	No
Temp Taken From Cooler	No		
COC meets acceptance criteria	Yes		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

Choctaw Generation LP 2391 Pensacola Rd.

Ackerman MS, 39735

Project: CGLP CCR Annual

Project Number: [none]
Project Manager: Jim Ward

Reported: 01/12/2023 12:00

CASE NARRATIVE SUMMARY

All reported results are within Micro-Methods Laboratory, Inc.defined laboratory quality control objectives unless detailed in narrative summary or identified as qualifications. NOTE: All results listed on this report are calculated on a wet weight basis (as received by the laboratory) unless otherwise noted in the analysis qualification sections.

Summary Comments:

See attached radiological results from Sub-Contract Laboratory

REVISED REPORT 1/12/2023:

Thallium results added to final report.

Qualification: No Data Qualification

Analyte & Samples(s) Qualified: None

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

Choctaw Generation LP 2391 Pensacola Rd. Ackerman MS, 39735 Project: CGLP CCR Annual

Project Number: [none]
Project Manager: Jim Ward

Reported: 01/12/2023 12:00

MW-7

2206051-01 (Water)

					,					
Analyte	Result	MRL	Units	Dil	Batch A	nalyst	Date Time Prepared	Date Time Analyzed	Method	Notes
Classical Chemistry Parame	eters									
Fluoride	ND	0.22	mg/L	1.0	2F06035	DLW	06/06/2022 13:20	06/06/2022 15:12	SM 4500-F C 2011	
Metals by EPA 200 Series M	lethods ICP-AES									
Barium 455.403 [Radial]	0.074	0.010	mg/L	1.0	2F08029	CLV	06/08/2022 09:30	06/28/2022 15:14	EPA 200.7 Rev 4.4	
Lithium 610.362 [Axial]	ND	0.040	"	"	"	CLV			"	
Metals by EPA 200 Series M	lethods ICP-MS [Analysis N	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	2F08032	SCH		06/10/2022 13:32	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	"	"	SCH			"	
Beryllium [He]	ND	0.00100	"	"		SCH			"	
Cadmium [He]	ND	0.00100	"	"	·	SCH			"	
Chromium [He]	0.00500	0.00100	"	"	"	SCH			"	
Cobalt [He]	ND	0.00100	"	"	"	SCH			"	
Lead [He]	ND	0.00100	"	"	"	SCH			"	
Molybdenum [He]	ND	0.00100	"	"	"	SCH			"	
Selenium [NG]	ND	0.00500	"	"	"	SCH			"	
Thallium [He]	ND	0.00500	"	"	"	SCH			"	
Mercury by EPA 200 Series	Methods CVAAS	;								
Mercury	ND	0.00200	mg/L	1.0	2F08028	TKM	06/07/2022 11:00	06/08/2022 12:40	EPA 245.1 Rev 3.0	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

Choctaw Generation LP 2391 Pensacola Rd.

Ackerman MS, 39735

Project: CGLP CCR Annual

Project Number: [none] Project Manager: Jim Ward

Reported:

01/12/2023 12:00

MW-9

2206051-02 (Water)

			22000	51-02 (1	rvater)					
Analyte	Result	MRL	Units	Dil	Batch A	nalyst	Date Time Prepared	Date Time Analyzed	Method	Notes
Classical Chemistry Parame	eters									
Fluoride	0.34	0.22	mg/L	1.0	2F06035	DLW	06/06/2022	06/06/2022 15:12	SM 4500-F C	
Metals by EPA 200 Series M	ethods ICP-AES						13:20	13.12	2011	
Barium 455.403 [Radial]	0.070	0.010	mg/L	1.0	2F08029	CLV	06/08/2022 09:30	06/28/2022 15:36	EPA 200.7 Rev 4.4	
Lithium 610.362 [Axial]	0.052	0.040	"	"	"	CLV			"	
Metals by EPA 200 Series M	ethods ICP-MS [Analysis M	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	2F08032	SCH	"	06/10/2022 13:49	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	"	"	SCH			"	
Beryllium [He]	0.00422	0.00100	"	"	"	SCH		"	"	
Cadmium [He]	ND	0.00100	"	"	"	SCH			"	
Chromium [He]	ND	0.00100	"	"	"	SCH			"	
Cobalt [He]	0.0154	0.00100	"	"	"	SCH			"	
ead [He]	ND	0.00100	"	"	"	SCH			"	
Molybdenum [He]	ND	0.00100	"	"	"	SCH			"	
Selenium [NG]	ND	0.00500	"	"	"	SCH			"	
hallium [He]	ND	0.00500	"	"	"	SCH			"	
Mercury by EPA 200 Series	Methods CVAAS	;								
Mercury	ND	0.00200	mg/L	1.0	2F08028	TKM	06/07/2022 11:00	06/08/2022 12:40	EPA 245.1 Rev 3.0	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

Choctaw Generation LP 2391 Pensacola Rd. Ackerman MS, 39735 Project: CGLP CCR Annual

Project Number: [none]
Project Manager: Jim Ward

Reported: 01/12/2023 12:00

MW-12

2206051-03 (Water)

				0.00(· · · · ,					
Analyte	Result	MRL	Units	Dil	Batch A	nalyst	Date Time Prepared	Date Time Analyzed	Method	Notes
•					2010		· · · · · · · · · · · · · · · · · · ·		Would	110100
Classical Chemistry Paramet Fluoride	0.69	0.22	mg/L	1.0	2F06035	DLW	06/06/2022 13:20	06/06/2022 15:12	SM 4500-F C 2011	
Metals by EPA 200 Series Me	thods ICP-AES									
Barium 455.403 [Radial]	0.188	0.010	mg/L	1.0	2F08029	CLV	06/08/2022 09:30	06/28/2022 15:40	EPA 200.7 Rev 4.4	
Lithium 610.362 [Axial]	ND	0.040	"	"	"	CLV				
Metals by EPA 200 Series Me	thods ICP-MS [Analysis N	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	2F08032	SCH		06/10/2022 13:55	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	"	"	SCH			"	
Beryllium [He]	ND	0.00100	"	"	"	SCH			"	
Cadmium [He]	ND	0.00100	"	"	"	SCH			"	
Chromium [He]	ND	0.00100	"	"	"	SCH			"	
Cobalt [He]	0.00650	0.00100	"	"	"	SCH			"	
_ead [He]	ND	0.00100	"	"	"	SCH			"	
Molybdenum [He]	ND	0.00100	"	"	"	SCH			"	
Selenium [NG]	ND	0.00500	"	"		SCH			"	
Thallium [He]	ND	0.00500	"	"	u	SCH				
Mercury by EPA 200 Series N	lethods CVAAS									
Mercury	ND	0.00200	mg/L	1.0	2F08028	TKM	06/07/2022 11:00	06/08/2022 12:40	EPA 245.1 Rev 3.0	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

Choctaw Generation LP 2391 Pensacola Rd. Ackerman MS, 39735 Project: CGLP CCR Annual

Project Number: [none]
Project Manager: Jim Ward

Reported: 01/12/2023 12:00

MW-13

2206051-04 (Water)

				U 1 U 7 (1	,					
Analyte	Result	MRL	Units	Dil	Batch A	nalyst	Date Time Prepared	Date Time Analyzed	Method	Notes
Classical Chemistry Parame					241011 /1	, 01			Motriou	110100
Fluoride	ND ND	0.22	mg/L	1.0	2F06035	DLW	06/06/2022 13:20	06/06/2022 15:12	SM 4500-F C 2011	
Metals by EPA 200 Series Me	ethods ICP-AES									
Barium 455.403 [Radial]	0.176	0.010	mg/L	1.0	2F08029	CLV	06/08/2022 09:30	06/28/2022 15:43	EPA 200.7 Rev 4.4	
ithium 610.362 [Axial]	ND	0.040	"	"	"	CLV			"	
Metals by EPA 200 Series Me	ethods ICP-MS [Analysis N	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	2F08032	SCH		06/10/2022 14:01	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	"	"	SCH			"	
Beryllium [He]	ND	0.00100	"	"	"	SCH		"	•	
Cadmium [He]	ND	0.00100	"	"	"	SCH			"	
Chromium [He]	0.00941	0.00100	"	"		SCH			"	
Cobalt [He]	ND	0.00100	"	"	"	SCH			"	
ead [He]	ND	0.00100	"	"	"	SCH			"	
Molybdenum [He]	ND	0.00100	"	"	"	SCH			"	
Selenium [NG]	ND	0.00500	"	"	"	SCH			"	
Thallium [He]	ND	0.00500	"	"	"	SCH			"	
Mercury by EPA 200 Series I	Methods CVAAS									
Mercury	ND	0.00200	mg/L	1.0	2F08028	TKM	06/07/2022 11:00	06/08/2022 12:40	EPA 245.1 Rev 3.0	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

Choctaw Generation LP 2391 Pensacola Rd. Ackerman MS, 39735 Project: CGLP CCR Annual

Project Number: [none]
Project Manager: Jim Ward

Reported: 01/12/2023 12:00

MW-14

2206051-05 (Water)

							·	Б .		
							Date Time	Date Time		
Analyte	Result	MRL	Units	Dil	Batch A	nalyst	Prepared	Analyzed	Method	Notes
Classical Chemistry Parameter	s									
Fluoride	ND	0.22	mg/L	1.0	2F06035	DLW	06/06/2022	06/06/2022	SM 4500-F C	
Metals by EPA 200 Series Meth	ods ICP-AES	}					13:20	15:12	2011	
Barium 455.403 [Radial]	0.013	0.010	mg/L	1.0	2F08029	CLV	06/08/2022	06/28/2022	EPA 200.7 Rev	
							09:30	15:47	4.4	
_ithium 610.362 [Axial]	ND	0.040	"	"	"	CLV		"	"	
Metals by EPA 200 Series Meth	ods ICP-MS	[Analysis N	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	2F08032	SCH		06/10/2022 14:07	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	"	"	SCH			"	
Beryllium [He]	ND	0.00100	"	"	ıı .	SCH			•	
Cadmium [He]	ND	0.00100	"	"	"	SCH			"	
Chromium [He]	ND	0.00100	"	"	"	SCH			"	
Cobalt [He]	ND	0.00100	"	"	"	SCH			"	
∟ead [He]	ND	0.00100	"	"	ıı .	SCH			•	
Molybdenum [He]	ND	0.00100	"	"	"	SCH			"	
Selenium [NG]	ND	0.00500	"	"	ıı .	SCH			"	
Fhallium [He]	ND	0.00500	"	"	"	SCH			"	
Mercury by EPA 200 Series Me	thods CVAAS	8								
Mercury	ND	0.00200	mg/L	1.0	2F08028	TKM	06/07/2022 11:00	06/08/2022 12:40	EPA 245.1 Rev 3.0	_

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

Choctaw Generation LP 2391 Pensacola Rd. Ackerman MS, 39735 Project: CGLP CCR Annual

Project Number: [none]
Project Manager: Jim Ward

Reported: 01/12/2023 12:00

Field Blank

2206051-06 (Water)

			22000	51-UD (I	rvater)					
Analyte	Result	MRL	Units	Dil	Batch <i>A</i>	Analyst	Date Time Prepared	Date Time Analyzed	Method	Notes
Classical Chemistry Paramet	ters									
Fluoride	ND	0.22	mg/L	1.0	2F06035	DLW	06/06/2022 13:20	06/06/2022 15:12	SM 4500-F C 2011	
Metals by EPA 200 Series Me	thods ICP-AES								20	
Barium 455.403 [Radial]	ND	0.010	mg/L	1.0	2F08029	CLV	06/08/2022 09:30	06/28/2022 15:51	EPA 200.7 Rev 4.4	
ithium 610.362 [Axial]	ND	0.040	"	"	"	CLV			"	
Metals by EPA 200 Series Me	thods ICP-MS	Analysis M	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	2F08032	SCH		06/10/2022 14:12	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	"	"	SCH			"	
Beryllium [He]	ND	0.00100	"	"	"	SCH			"	
Cadmium [He]	ND	0.00100	"	"	"	SCH			"	
Chromium [He]	ND	0.00100	u	"	"	SCH		"	"	
Cobalt [He]	ND	0.00100	"	"	"	SCH			"	
ead [He]	ND	0.00100	"	"	"	SCH			"	
Molybdenum [He]	ND	0.00100	"	"	"	SCH			"	
Selenium [NG]	ND	0.00500	"	"	"	SCH			"	
「hallium [He]	ND	0.00500	"	"	"	SCH			"	
Mercury by EPA 200 Series N	lethods CVAAS	;								
Mercury	ND	0.00200	mg/L	1.0	2F08028	TKM	06/07/2022 11:00	06/08/2022 12:40	EPA 245.1 Rev 3.0	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

Choctaw Generation LP 2391 Pensacola Rd. Ackerman MS, 39735 Project: CGLP CCR Annual

Project Number: [none]
Project Manager: Jim Ward

Reported:

01/12/2023 12:00

Duplicate

2206051-07 (Water)

				01-07 (1	, , ,					
Analyte	Result	MRL	Units	Dil	Batch A	nalyst	Date Time Prepared	Date Time Analyzed	Method	Notes
•		IVIIXL	Offics	- Dii	Daton A	ilalyst	Troparou	, mary 20a	Metriod	Notes
Classical Chemistry Paramete	rs									
Fluoride	ND	0.22	mg/L	1.0	2F06035	DLW	06/06/2022 13:20	06/06/2022 15:12	SM 4500-F C 2011	
Metals by EPA 200 Series Met	hods ICP-AES									
Barium 455.403 [Radial]	0.013	0.010	mg/L	1.0	2F08029	CLV	06/08/2022 09:30	06/28/2022 15:54	EPA 200.7 Rev 4.4	
Lithium 610.362 [Axial]	ND	0.040	"	"	"	CLV			"	
Metals by EPA 200 Series Met	hods ICP-MS	Analysis M	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	2F08032	SCH	"	06/10/2022 14:18	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	"	"	SCH			"	
Beryllium [He]	ND	0.00100	"	"	"	SCH				
Cadmium [He]	ND	0.00100	"	"	"	SCH			"	
Chromium [He]	ND	0.00100	"	"		SCH			"	
Cobalt [He]	ND	0.00100	"	"		SCH				
Lead [He]	ND	0.00100	"	"	"	SCH			"	
Molybdenum [He]	ND	0.00100	"	"	"	SCH				
Selenium [NG]	ND	0.00500	"	"	"	SCH			"	
Thallium [He]	ND	0.00500	"	"	"	SCH			"	
Mercury by EPA 200 Series Me	ethods CVAAS	}								
Mercury	ND	0.00200	mg/L	1.0	2F08028	TKM	06/07/2022 11:00	06/08/2022 12:40	EPA 245.1 Rev 3.0	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

Choctaw Generation LP 2391 Pensacola Rd. Ackerman MS, 39735 Project: CGLP CCR Annual

Project Number: [none]
Project Manager: Jim Ward

Reported: 01/12/2023 12:00

OW-2

2206051-08 (Water)

				31-00 (1			Date	Date		
Analyte	Result	MRL	Units	Dil	Batch A	nalyst	Time Prepared	Time Analyzed	Method	Notes
Classical Chemistry Parame	ters									
Fluoride	ND	0.22	mg/L	1.0	2F06035	DLW	06/06/2022	06/06/2022	SM 4500-F C	
Metals by EPA 200 Series Me	ethods ICP-AES						13:20	15:12	2011	
Barium 455.403 [Radial]	0.044	0.010	mg/L	1.0	2F08029	CLV	06/08/2022 09:30	06/28/2022 15:58	EPA 200.7 Rev 4.4	
ithium 610.362 [Axial]	ND	0.040	"	"	"	CLV			"	
Metals by EPA 200 Series Me	ethods ICP-MS	Analysis N	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	2F08032	SCH		06/10/2022 14:24	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	"	"	SCH			"	
Beryllium [He]	ND	0.00100	"	"	"	SCH			"	
Cadmium [He]	ND	0.00100	"	"	"	SCH			"	
Chromium [He]	ND	0.00100	"	"	"	SCH			"	
Cobalt [He]	ND	0.00100	"	"	11	SCH			"	
ead [He]	ND	0.00100	"	"	"	SCH	*		"	
Molybdenum [He]	ND	0.00100	"	"	"	SCH	*		"	
Selenium [NG]	ND	0.00500	"	"	"	SCH			m .	
「hallium [He]	ND	0.00500	"	"	"	SCH	*		"	
Mercury by EPA 200 Series M	Methods CVAAS	;								
Mercury	ND	0.00200	mg/L	1.0	2F08028	TKM	06/07/2022 11:00	06/08/2022 12:40	EPA 245.1 Rev 3.0	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

Choctaw Generation LP 2391 Pensacola Rd.

Ackerman MS, 39735

Project: CGLP CCR Annual

Project Number: [none]
Project Manager: Jim Ward

Reported: 01/12/2023 12:00

CCR-2

2206051-09 (Water)

				31-09 (1	vatory					
Analyte	Result	MRL	Units	Dil	Batch A	Analyst	Date Time Prepared	Date Time Analyzed	Method	Notes
Classical Chemistry Parame							<u> </u>			
Fluoride	ND	0.22	mg/L	1.0	2F06035	DLW	06/06/2022 13:20	06/06/2022 15:12	SM 4500-F C 2011	
Metals by EPA 200 Series M	ethods ICP-AES									
Barium 455.403 [Radial]	0.147	0.010	mg/L	1.0	2F08029	CLV	06/08/2022 09:30	06/28/2022 16:02	EPA 200.7 Rev 4.4	
Lithium 610.362 [Axial]	ND	0.040	"	"	"	CLV			"	
Metals by EPA 200 Series M	ethods ICP-MS	Analysis M	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	2F08032	SCH		06/10/2022 14:30	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	"	"	SCH			"	
Beryllium [He]	ND	0.00100	"	"	"	SCH			"	
Cadmium [He]	ND	0.00100	"	"	"	SCH			"	
Chromium [He]	ND	0.00100	"	"	"	SCH			"	
Cobalt [He]	0.0117	0.00100	"	"	"	SCH			"	
Lead [He]	ND	0.00100	"	"	"	SCH			"	
Molybdenum [He]	ND	0.00100	"	"	"	SCH			"	
Selenium [NG]	ND	0.00500	"	"	"	SCH			m .	
Thallium [He]	ND	0.00500	"	"	"	SCH			"	
Mercury by EPA 200 Series	Methods CVAAS	}								
Mercury	ND	0.00200	mg/L	1.0	2F08028	TKM	06/07/2022 11:00	06/08/2022 12:40	EPA 245.1 Rev 3.0	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

Choctaw Generation LP 2391 Pensacola Rd.

Ackerman MS, 39735

Project: CGLP CCR Annual

Project Number: [none]
Project Manager: Jim Ward

Reported:

01/12/2023 12:00

CCR-3

2206051-10 (Water)

			22000	51-1U (I	water)					
Analyte	Result	MRL	Units	Dil	Batch A	ınalyst	Date Time Prepared	Date Time Analyzed	Method	Notes
Classical Chemistry Parame	eters									
Fluoride	0.25	0.22	mg/L	1.0	2F06035	DLW	06/06/2022 13:20	06/06/2022 15:12	SM 4500-F C 2011	
Metals by EPA 200 Series M	ethods ICP-AES						13.20	10.12	2011	
Barium 455.403 [Radial]	0.060	0.010	mg/L	1.0	2F08029	CLV	06/08/2022 09:30	06/28/2022 16:31	EPA 200.7 Rev 4.4	
Lithium 610.362 [Axial]	0.084	0.040	"	"	"	CLV			"	
Metals by EPA 200 Series M	ethods ICP-MS	Analysis N	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	2F08032	SCH	н	06/10/2022 15:25	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	"	"	SCH			"	
Beryllium [He]	ND	0.00100	"	"	"	SCH			"	
Cadmium [He]	ND	0.00100	"	"	"	SCH			"	
Chromium [He]	ND	0.00100	u	"	"	SCH			"	
Cobalt [He]	0.0167	0.00100	"	"	"	SCH			"	
ead [He]	ND	0.00100	"	"	"	SCH			"	
Molybdenum [He]	ND	0.00100	"	"	"	SCH			"	
Selenium [NG]	ND	0.00500	u .	"	"	SCH			"	
Thallium [He]	ND	0.00500	"	"	"	SCH			"	
Mercury by EPA 200 Series	Methods CVAAS	;								
Mercury	ND	0.00200	mg/L	1.0	2F08028	TKM	06/07/2022 11:00	06/08/2022 12:40	EPA 245.1 Rev 3.0	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

Choctaw Generation LP 2391 Pensacola Rd. Ackerman MS, 39735 Project: CGLP CCR Annual

Project Number: [none]
Project Manager: Jim Ward

Reported:

01/12/2023 12:00

CCR-4

2206051-11 (Water)

				·) · · · · ·						
Analyte	Result	MRL	Units	Dil	Batch A	nalyst	Date Time Prepared	Date Time Analyzed	Method	Notes
Classical Chemistry Paramet	ters									
Fluoride	ND	0.22	mg/L	1.0	2F06035	DLW	06/06/2022 13:20	06/06/2022 15:12	SM 4500-F C 2011	
Metals by EPA 200 Series Me	thods ICP-AES									
3arium 455.403 [Radial]	0.166	0.010	mg/L	1.0	2F08029	CLV	06/08/2022 09:30	06/28/2022 15:25	EPA 200.7 Rev 4.4	
Lithium 610.362 [Axial]	ND	0.040	u .	"	"	CLV			"	
Metals by EPA 200 Series Me	thods ICP-MS [Analysis M	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	2F08032	SCH		06/10/2022 15:31	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	"	"	SCH			"	
Beryllium [He]	ND	0.00100	"	"	· ·	SCH			"	
Cadmium [He]	ND	0.00100	"	"	"	SCH			"	
Chromium [He]	0.0126	0.00100	"	"	"	SCH			"	
Cobalt [He]	0.00272	0.00100	"	"	"	SCH			"	
ead [He]	ND	0.00100	"	"	u	SCH		•	"	
Nolybdenum [He]	ND	0.00100	"	"	"	SCH	"		"	
Selenium [NG]	ND	0.00500	"	"	"	SCH	"		"	
Гhallium [He]	ND	0.00500	"	"	"	SCH				
Mercury by EPA 200 Series N	lethods CVAAS									
Mercury	ND	0.00200	mg/L	1.0	2F08028	TKM	06/07/2022 11:00	06/08/2022 12:40	EPA 245.1 Rev 3.0	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

Choctaw Generation LP 2391 Pensacola Rd. Ackerman MS, 39735 Project: CGLP CCR Annual

Project Number: [none]
Project Manager: Jim Ward

Reported: 01/12/2023 12:00

CCR-5

2206051-12 (Water)

				31-12 (1	1410.7					
Analyte	Result	MRL	Units	Dil	Batch <i>I</i>	Analyst	Date Time Prepared	Date Time Analyzed	Method	Notes
Classical Chemistry Parame	eters									
Fluoride	ND	0.22	mg/L	1.0	2F06035	DLW	06/06/2022 13:20	06/06/2022 15:12	SM 4500-F C 2011	
Metals by EPA 200 Series M	ethods ICP-AES									
Barium 455.403 [Radial]	0.064	0.010	mg/L	1.0	2F08029	CLV	06/08/2022 09:30	06/28/2022 16:35	EPA 200.7 Rev 4.4	
Lithium 610.362 [Axial]	ND	0.040	"	"	"	CLV			"	
Metals by EPA 200 Series M	ethods ICP-MS [Analysis M	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	2F08032	SCH		06/10/2022 15:48	EPA 200.8 Rev 5.4	
Arsenic [NG]	0.00444	0.00200	"	"	"	SCH			"	
Beryllium [He]	ND	0.00100	"	"	"	SCH			"	
Cadmium [He]	ND	0.00100	"	"	"	SCH			"	
Chromium [He]	ND	0.00100	"	"	"	SCH			"	
Cobalt [He]	0.00556	0.00100	"	"	"	SCH			"	
₋ead [He]	ND	0.00100	"	"	"	SCH			•	
Molybdenum [He]	ND	0.00100	"	"	"	SCH			"	
Selenium [NG]	ND	0.00500	"	"	"	SCH			"	
Thallium [He]	ND	0.00500	"	"	"	SCH			"	
Mercury by EPA 200 Series	Methods CVAAS									
Mercury	ND	0.00200	mg/L	1.0	2F08028	TKM	06/07/2022 11:00	06/08/2022 12:40	EPA 245.1 Rev 3.0	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

Choctaw Generation LP 2391 Pensacola Rd. Ackerman MS, 39735 Project: CGLP CCR Annual

Project Number: [none]
Project Manager: Jim Ward

Reported: 01/12/2023 12:00

Classical Chemistry Parameters - Quality Control

Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Batch 2F06035 - Default Prep GenCher	m										
Blank (2F06035-BLK1)											
Fluoride	6/6/22 15:12	ND	0.22	mg/L							
LCS (2F06035-BS1)											
Fluoride	6/6/22 15:12	1.95	0.22	mg/L	2.00		97.5	83.3-107			
LCS Dup (2F06035-BSD1)											
Fluoride	6/6/22 15:12	1.95	0.22	mg/L	2.00		97.5	83.3-107	0.00	30	
Duplicate (2F06035-DUP1)			Source: 22060	51-01							
Fluoride	6/6/22 15:12	0.16	0.22	mg/L		0.17			4.82	20	
Matrix Spike (2F06035-MS1)			Source: 22060	51-01							
Fluoride	6/6/22 15:12	2.10	0.22	mg/L	2.00	0.17	96.5	79.3-113			
Matrix Spike Dup (2F06035-MSD1)			Source: 22060	51-01							
Fluoride	6/6/22 15:12	2.16	0.22	mg/L	2.00	0.17	99.5	79.3-113	2.82	30	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

Choctaw Generation LP 2391 Pensacola Rd. Ackerman MS, 39735 Project: CGLP CCR Annual

Project Number: [none]
Project Manager: Jim Ward

Reported: 01/12/2023 12:00

Metals by EPA 200 Series Methods ICP-AES - Quality Control

Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Batch 2F08029 - EPA 200.2 DCN 1	017 Rev 10										
Blank (2F08029-BLK1)											
Barium 455.403 [Radial]	6/28/22 15:03	ND	0.010	mg/L							
Lithium 610.362 [Axial]	6/28/22 15:03	ND	0.040								
LCS (2F08029-BS1)											
Barium 455.403 [Radial]	6/28/22 15:07	0.212	0.010	mg/L	0.200		106	85-115			
Lithium 610.362 [Axial]	6/28/22 15:07	0.210	0.040		0.200		105	85-115			
LCS Dup (2F08029-BSD1)											
Barium 455.403 [Radial]	6/28/22 15:10	0.215	0.010	mg/L	0.200		107	85-115	1.11	20	
Lithium 610.362 [Axial]	6/28/22 15:10	0.210	0.040		0.200		105	85-115	0.0539	20	
Matrix Spike (2F08029-MS1)			Source: 22060)51-01							
Barium 455.403 [Radial]	6/28/22 15:18	0.285	0.010	mg/L	0.200	0.074	105	70-130			
Lithium 610.362 [Axial]	6/28/22 15:18	0.242	0.040		0.200	0.013	114	70-130			
Matrix Spike (2F08029-MS2)			Source: 22060)51-11							
Barium 455.403 [Radial]	6/28/22 15:29	0.367	0.010	mg/L	0.200	0.166	100	70-130			
Lithium 610.362 [Axial]	6/28/22 15:29	0.250	0.040		0.200	0.018	116	70-130			
Matrix Spike Dup (2F08029-MSD1))		Source: 22060	051-01							
Barium 455.403 [Radial]	6/28/22 15:21	0.288	0.010	mg/L	0.200	0.074	107	70-130	1.12	20	
Lithium 610.362 [Axial]	6/28/22 15:32	0.252	0.040		0.200	0.013	120	70-130	4.28	20	
Matrix Spike Dup (2F08029-MSD2)		Source: 22060)51-11							
Barium 455.403 [Radial]	6/28/22 15:32	0.373	0.010	mg/L	0.200	0.166	103	70-130	1.84	20	
Lithium 610.362 [Axial]	6/28/22 15:32	0.252	0.040		0.200	0.018	117	70-130	1.01	20	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

Choctaw Generation LP 2391 Pensacola Rd. Ackerman MS, 39735 Project: CGLP CCR Annual

Project Number: [none] Reported:
Project Manager: Jim Ward 01/12/2023 12:00

Metals by EPA 200 Series Methods ICP-MS [Analysis Mode] - Quality Control

Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Batch 2F08032 - EPA 200.2 DC	N 1017 Rev 10										
Blank (2F08032-BLK1)											
Antimony [He]	6/10/22 13:15	ND	0.00200	mg/L							
Arsenic [NG]	6/10/22 13:15	ND	0.00200								
Arsenic [He]	6/10/22 13:15	ND	0.00200								
Beryllium [He]	6/10/22 13:15	ND	0.00100								
Cadmium [He]	6/10/22 13:15	ND	0.00100	"							
Chromium [He]	6/10/22 13:15	ND	0.00100	"							
Cobalt [He]	6/10/22 13:15	ND	0.00100	"							
Lead [He]	6/10/22 13:15	ND	0.00100	"							
Molybdenum [He]	6/10/22 16:00	ND	0.00100								
Selenium [NG]	6/10/22 13:15	ND	0.00500								
Selenium [He]	6/10/22 13:15	ND	0.00100								
Thallium [He]	6/10/22 13:15	ND	0.00500								
LCS (2F08032-BS1)											
Antimony [He]	6/10/22 13:21	0.103	0.00200	mg/L	0.100		103	85-115			
Arsenic [NG]	6/10/22 13:21	0.099	0.00200		0.100		99.2	85-115			
Arsenic [He]	6/10/22 13:21	0.101	0.00200		0.100		101	85-115			
Beryllium [He]	6/10/22 13:21	0.098	0.00100		0.100		98.3	85-115			
Cadmium [He]	6/10/22 13:21	0.101	0.00100		0.100		101	85-115			
Chromium [He]	6/10/22 13:21	0.101	0.00100		0.100		101	85-115			
Cobalt [He]	6/10/22 13:21	0.101	0.00100		0.100		101	85-115			
Lead [He]	6/10/22 13:21	0.097	0.00100		0.100		96.6	85-115			
Molybdenum [He]	6/10/22 13:21	0.097	0.00100		0.100		96.9	85-115			
Selenium [NG]	6/10/22 13:21	0.100	0.00500		0.100		100	85-115			
Selenium [He]	6/10/22 13:21	0.098	0.00100		0.100		98.1	85-115			
Thallium [He]	6/10/22 13:21	0.099	0.00500		0.100		98.6	85-115			
LCS Dup (2F08032-BSD1)											
Antimony [He]	6/10/22 13:26	0.101	0.00200	mg/L	0.100		101	85-115	1.21	20	
Arsenic [NG]	6/10/22 13:26	0.098	0.00200		0.100		98.5	85-115	0.788	20	
Arsenic [He]	6/10/22 13:26	0.099	0.00200		0.100		98.9	85-115	1.93	20	
Beryllium [He]	6/10/22 13:26	0.097	0.00100		0.100		96.9	85-115	1.43	20	
Cadmium [He]	6/10/22 13:26	0.100	0.00100		0.100		100	85-115	1.39	20	
Chromium [He]	6/10/22 13:26	0.098	0.00100		0.100		97.7	85-115	3.30	20	
Cobalt [He]	6/10/22 13:26	0.098	0.00100		0.100		97.5	85-115	3.68	20	
Lead [He]	6/10/22 13:26	0.096	0.00100		0.100		96.2	85-115	0.440	20	
Molybdenum [He]	6/10/22 13:26	0.096	0.00100		0.100		95.6	85-115	1.35	20	
Selenium [He]	6/10/22 13:26	0.099	0.00100		0.100		98.9	85-115	0.895	20	
Selenium [NG]	6/10/22 13:26	0.098	0.00500		0.100		98.3	85-115	1.72	20	
Thallium [He]	6/10/22 13:26	0.098	0.00500		0.100		98.4	85-115	0.211	20	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

Choctaw Generation LP 2391 Pensacola Rd. Ackerman MS, 39735 Project: CGLP CCR Annual

Project Number: [none]
Project Manager: Jim Ward

Reported: 01/12/2023 12:00

Metals by EPA 200 Series Methods ICP-MS [Analysis Mode] - Quality Control

Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Batch 2F08032 - EPA 200.2 DCN 1	017 Rev 10										
Matrix Spike (2F08032-MS1)			Source: 22060	51-01							
Antimony [He]	6/10/22 13:38	0.104	0.00200	mg/L	0.100	ND	104	70-130			
Arsenic [NG]	6/10/22 13:38	0.100	0.00200		0.100	ND	99.8	70-130			
Arsenic [He]	6/10/22 13:38	0.100	0.00200		0.100	ND	99.5	70-130			
Beryllium [He]	6/10/22 13:38	0.102	0.00100		0.100	ND	102	70-130			
Cadmium [He]	6/10/22 13:38	0.101	0.00100		0.100	ND	101	70-130			
Chromium [He]	6/10/22 13:38	0.100	0.00100		0.100	0.005	94.8	70-130			
Cobalt [He]	6/10/22 13:38	0.099	0.00100		0.100	ND	99.2	70-130			
Lead [He]	6/10/22 13:38	0.097	0.00100		0.100	ND	97.0	70-130			
Molybdenum [He]	6/10/22 13:38	0.108	0.00100		0.100	0.0006	107	70-130			
Selenium [NG]	6/10/22 13:38	0.099	0.00500		0.100	ND	99.4	70-130			
Selenium [He]	6/10/22 13:38	0.094	0.00100		0.100	ND	93.6	70-130			
Thallium [He]	6/10/22 13:38	0.100	0.00500		0.100	ND	100	70-130			
Matrix Spike (2F08032-MS2)			Source: 22060	51-11							
Antimony [He]	6/10/22 16:29	0.106	0.00200	mg/L	0.100	ND	106	70-130			
Arsenic [NG]	6/10/22 16:29	0.100	0.00200		0.100	0.0006	99.4	70-130			
Arsenic [He]	6/10/22 16:29	0.100	0.00200		0.100	ND	99.5	70-130			
Beryllium [He]	6/10/22 16:29	0.098	0.00100		0.100	ND	98.2	70-130			
Cadmium [He]	6/10/22 16:29	0.101	0.00100		0.100	ND	101	70-130			
Chromium [He]	6/10/22 16:29	0.095	0.00100		0.100	0.013	82.6	70-130			
Cobalt [He]	6/10/22 16:29	0.096	0.00100		0.100	0.003	93.6	70-130			
Lead [He]	6/10/22 16:29	0.092	0.00100		0.100	ND	92.3	70-130			
Molybdenum [He]	6/10/22 16:29	0.108	0.00100		0.100	ND	108	70-130			
Selenium [NG]	6/10/22 16:29	0.099	0.00500		0.100	ND	98.9	70-130			
Selenium [He]	6/10/22 16:29	0.091	0.00100		0.100	ND	90.6	70-130			
Thallium [He]	6/10/22 16:29	0.100	0.00500		0.100	ND	99.8	70-130			
Matrix Spike Dup (2F08032-MSD1)			Source: 22060	51-01							
Antimony [He]	6/10/22 13:43	0.103	0.00200	mg/L	0.100	ND	103	70-130	1.09	20	
Arsenic [He]	6/10/22 13:43	0.100	0.00200	g/ L	0.100	ND	100	70-130	0.809	20	
Arsenic [NG]	6/10/22 13:43	0.099	0.00200		0.100	ND	99.4	70-130	0.355	20	
Beryllium [He]	6/10/22 13:43	0.101	0.00200		0.100	ND	101	70-130	1.62	20	
Cadmium [He]	6/10/22 13:43	0.100	0.00100		0.100	ND	100	70-130	1.12	20	
Chromium [He]	6/10/22 13:43	0.099	0.00100		0.100	0.005	94.2	70-130	0.591	20	
Cobalt [He]	6/10/22 13:43	0.099	0.00100		0.100	ND	99.1	70-130	0.133	20	
Lead [He]	6/10/22 13:43	0.094	0.00100		0.100	ND	94.4	70-130	2.72	20	
Molybdenum [He]	6/10/22 13:43	0.107	0.00100		0.100	0.0006	106	70-130	0.937	20	
	6/10/22 13:43	0.107	0.00100		0.100	0.0000 ND	97.9	70-130	1.55	20	
Selenium [NG] Selenium [He]	6/10/22 13:43	0.090			0.100	ND	89.6	70-130	4.35	20	
			0.00100								
Thallium [He]	6/10/22 13:43	0.100	0.00500		0.100	ND	100	70-130	0.127	20	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

Reported:

01/12/2023 12:00

Choctaw Generation LP 2391 Pensacola Rd. Ackerman MS, 39735 Project: CGLP CCR Annual

Project Number: [none]
Project Manager: Jim Ward

Metals by EPA 200 Series Methods ICP-MS [Analysis Mode] - Quality Control

Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Batch 2F08032 - EPA 200.2 DCN 1	017 Rev 10										
Matrix Spike Dup (2F08032-MSD2))		Source: 22060	51-11							
Antimony [He]	6/10/22 15:37	0.106	0.00200	mg/L	0.100	ND	106	70-130	0.157	20	
Arsenic [NG]	6/10/22 15:37	0.100	0.00200		0.100	0.0006	99.5	70-130	0.0811	20	
Arsenic [He]	6/10/22 15:37	0.101	0.00200		0.100	ND	101	70-130	1.60	20	
Beryllium [He]	6/10/22 15:37	0.099	0.00100		0.100	ND	99.4	70-130	1.19	20	
Cadmium [He]	6/10/22 15:37	0.101	0.00100		0.100	ND	101	70-130	0.464	20	
Chromium [He]	6/10/22 15:37	0.098	0.00100		0.100	0.013	85.1	70-130	2.60	20	
Cobalt [He]	6/10/22 15:37	0.099	0.00100		0.100	0.003	96.1	70-130	2.60	20	
Lead [He]	6/10/22 15:37	0.097	0.00100		0.100	ND	97.0	70-130	4.96	20	
Molybdenum [He]	6/10/22 15:37	0.109	0.00100		0.100	ND	109	70-130	1.27	20	
Selenium [NG]	6/10/22 15:37	0.099	0.00500		0.100	ND	98.6	70-130	0.302	20	
Selenium [He]	6/10/22 15:37	0.087	0.00100		0.100	ND	87.1	70-130	3.95	20	
Thallium [He]	6/10/22 15:37	0.102	0.00500		0.100	ND	102	70-130	1.99	20	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

Choctaw Generation LP 2391 Pensacola Rd. Ackerman MS, 39735 Project: CGLP CCR Annual

Project Number: [none]
Project Manager: Jim Ward

Reported: 01/12/2023 12:00

Mercury by EPA 200 Series Methods CVAAS - Quality Control

Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Batch 2F08028 - EPA 7470A DCN 101	7 Rev 10										
Blank (2F08028-BLK1)											
Mercury	6/8/22 12:40	ND	0.00200	mg/L							
Blank (2F08028-BLK2)											
Mercury	6/8/22 12:40	ND	0.00200	mg/L							
LCS (2F08028-BS1)											
Mercury	6/8/22 12:40	0.005	0.00200	mg/L	0.00500		90.0	85-115			
LCS (2F08028-BS2)											
Mercury	6/8/22 12:40	0.005	0.00200	mg/L	0.00500		98.0	85-115			
LCS Dup (2F08028-BSD1)											
Mercury	6/8/22 12:40	0.004	0.00200	mg/L	0.00500		86.0	85-115	4.55	20	
LCS Dup (2F08028-BSD2)											
Mercury	6/8/22 12:40	0.005	0.00200	mg/L	0.00500		102	85-115	4.00	20	
Matrix Spike (2F08028-MS1)			Source: 22060	43-01							
Mercury	6/8/22 12:40	0.004	0.00200	mg/L	0.00500	ND	82.0	70-130			
Matrix Spike (2F08028-MS2)			Source: 22060	51-05							
Mercury	6/8/22 12:40	0.005	0.00200	mg/L	0.00500	ND	104	70-130			
Matrix Spike Dup (2F08028-MSD1)			Source: 22060	43-01							
Mercury	6/8/22 12:40	0.004	0.00200	mg/L	0.00500	ND	78.0	70-130	5.00	20	
Matrix Spike Dup (2F08028-MSD2)			Source: 22060	51-05							
Mercury	6/8/22 12:40	0.005	0.00200	mg/L	0.00500	ND	94.0	70-130	10.1	20	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

Choctaw Generation LP

Project Number: [none]

Project: CGLP CCR Annual

Ackerman MS, 39735 Project Manager: Jim Ward

Reported: 01/12/2023 12:00

Certified Analyses Included in this Report

2391 Pensacola Rd.

Analyte	Certification Code
EPA 200.7 Rev 4.4 in Water	
Aluminum 394.401 [Radial]	C01,C02
Aluminum 396.152 [Radial]	C01,C02
Antimony 206.833 [Axial]	C01,C02
Arsenic 193.759 [Axial]	C01,C02
Barium 455.403 [Radial]	C01,C02
Barium 493.409 [Radial]	C01,C02
Beryllium 313.042 [Axial]	C01,C02
Boron 249.773 [Radial]	C01,C02
Cadmium 228.802 [Axial]	C01,C02
Calcium 315.887 [Radial]	C01,C02
Chromium 283.563 [Axial]	C01,C02
Cobalt 228.616 [Axial]	C01,C02
Copper 324.754 [Axial]	C01,C02
Iron 259.940 [Axial]	C01,C02
Iron 259.940 [Radial]	C01,C02
Lead 220.353 [Axial]	C01,C02
Lithium 610.362 [Axial]	C01,C02
Magnesium 285.213 [Radial]	C01,C02
Manganese 257.610 [Axial]	C01,C02
Molybdenum 202.030 [Axial]	C01,C02
Nickel 231.604 [Axial]	C01,C02
Potassium 766.490 [Radial]	C01,C02
Phosphorus 178.284 [Axial]	C01,C02
Phosphorus 178.284 [Radial]	C01,C02
Selenium 196.090 [Axial]	C01,C02
Silver 328.068 [Axial]	C01,C02
Sodium 589.592 [Axial]	C01,C02
Sodium 589.592 [Radial]	C01,C02
Strontium 346.446 [Radial]	C01,C02
Strontium 421.552 [Radial]	C01,C02
Thallium 190.856 [Axial]	C01,C02
Vanadium 309.311 [Axial]	C01,C02
Zinc 213.856 [Axial]	C01,C02
EPA 200.8 Rev 5.4 in Water	
Aluminum [He]	C01,C02
Antimony [He]	C01,C02
Antimony [HHe]	C01,C02
Antimony [NG]	C01,C02
Arsenic [He]	C01,C02

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

6500 Sunplex Drive Ocean Springs, MS 39564 228-875-6420 Phone 228-875-6423 Fax

	Choctaw Generation LP 2391 Pensacola Rd. Ackerman MS, 39735	Project: Project Number: Project Manager:	1 1	Reported: 01/12/2023 12:00
J	Arsenic [HHe]	C01,C02		

• •	00.,002
Arsenic [NG]	C01,C02
Barium [He]	C01,C02
Beryllium [He]	C01,C02
Boron [NG]	C01,C02
Cadmium [He]	C01,C02
Cadmium [HHe]	C01,C02
Cadmium [NG]	C01,C02
Chromium [He]	C01,C02
Cobalt [He]	C01,C02
Copper [He]	C01,C02
Copper [NG]	C01,C02
Iron [He]	C01,C02
Lead [He]	C01,C02
Lead [NG]	C01,C02
Manganese [He]	C01,C02
Molybdenum [He]	C01,C02
Nickel [He]	C01,C02
Selenium [He]	C01,C02
Selenium [HHe]	C01,C02
Selenium [NG]	C01,C02
Silver [He]	C01,C02
Silver [NG]	C01,C02
Strontium [He]	C01,C02
Thallium [He]	C01,C02
Vanadium [He]	C01,C02
Zinc [He]	C01,C02

EPA 245.1 Rev 3.0 in Water

Mercury C01,C02

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

^{**}Only compounds included in this list are associated with accredited analyses**

Choctaw Generation LP 2391 Pensacola Rd. Ackerman MS, 39735 Project: CGLP CCR Annual

Project Number: [none]
Project Manager: Jim Ward

Reported: 01/12/2023 12:00

Laboratory Accreditations/Certifications

Code	Description	Number	Expires
C01	LA Environmental Lab Accreditation Program	01960	06/30/2022
C02	The NELAC Institute (NELAP)	TNI01397	06/30/2022
C03	Ms Dept of Health (Drinking Water Microbiology)	MS00021	12/31/2022
C04	Ms Dept of Health (Drinking Water Chemistry)	MS00021	12/31/2022
C05	Ms DEQ Lead Firm Certification	PBF-00000028	03/24/2023
C06	MsDEQ Asbestos Inspector : C.D. Bingham	ABI-00001348	02/12/2023
C07	MsDEQ Air Monitor : C.D. Bingham	AM-011572	02/13/2023
C08	MsDEQ Asbestos Inspector: C. W. Meins	ABI-00001821	09/09/2022
C09	MsDEQ Air Monitor: C.W. Meins	AM-011189	02/13/2023
C14	MsDEQ Lead Paint Inspector : C.D. Bingham	PBI-00003690	01/29/2023
C15	MsDEQ Lead Paint Inspector : C.W. Meins	PBI-00001740	01/29/2023

Report Definitions

DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the minimum reporting limit
NR	Not Reported
RPD	Relative Percent Difference
ICV	Initial Calibration Verfiication
CCV	Continuing Calibration Verification Standard
SSV	Secondary Source Verfication Standard
LCS	Lab Control Spike - Lab matrix prepared with known concentration of analyte/s of interest analyzed by method.
MS	Matrix Spike - Sample prepared with known concentration of analyte/s of interest analyzed by method.
MSD	Matrix Spike Duplicate - Duplicate sample prepared with known concentration of anlayte/s of interest analyzed by method.
MRL	Minimum Reporting Limit
%REC	Percentage Recovery of known concentration added to matrix
Batch	Group of samples prepared for analysis not to exceed 20 samples.
Matrix	Material containing analyte/s of interest
Surrogate	Analyte added to sample to determine extraction efficiency of method.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

Choctaw Generation LP Project: CGLP CCR Annual

2391 Pensacola Rd. Project Number: [none] Reported:
Ackerman MS, 39735 Project Manager: Jim Ward 01/12/2023 12:00

<u>Initials</u>
CLV DLW SET SCH TKM TPT
!

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Micro-Methods Laboratory, Inc.

www.micromethodslab.com (228) 875-6420 FAX (228) 875-6423 PO Box 1410, Ocean Springs, MS 39566-1410

Chain of Custody Record

M-M Lab WO#

TNI ID # 01960 TNI ID # TNI01397 Lab ID# MS00021

Print Form

Page 29 of 45

Company Name: Choctaw Generation Limited Partnership LLLP Project Manager:	.p Project Manager: Jim Ward	Turn Around Time & Reporting
Address: 2391 Pensacola Rd.		Our normal turn around time is 10 working days *All rush order Phone
City: Ackerman State: MS Zip: 39735	Email Address :	ay* requests must be
Phone: 662-387-5758	Sampler Name Printed: ETHAN EASTERLING	prior approved. —
Fax	Sampler Name Signed:	QC Level: Level 1 Level 2 Level 3
	List Analyses Requested	Field Testing
Project Name: CGLP CCR	servative:	Field Test Field Test Field Test W= Water
Project #: Annual	ontaine G) or osite (C) Oride ny, Arse, Berryll mium, obalt omium, ercury denun enium Radium & 228	
Sample Identification Sampling Matrix Sample Ode	# of C Grab (Comp FIL Antimo Barium Cad C Chric Lit Molyk Sel Tha	S = Solid SC = Coding = C
MW-7 601/22 10:36 W	S X X X	L = Liquid
W \$11:45 W	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	A= Air
MW-12 \$\frac{1}{3}\frac{1}{12} \siz\frac{1}{32} \w	4 X X X X X X X X X X X X X X X X X X X	SL = Sludge
MW-13 6/61/27.03:55 W	* X X X X X X X X X X X X X X X X X X X	
Stil 22(10)	4	
6/01/12 11:17		Preservation:
le		2= H3PO4
5/2/122/4.90		3=NaOH
CCR-2 5/3//2/5/20 W		5=ZnC4H1006 &
5/31/72 14/53	**************************************	6=HNO3
Received on Ice? (V) N Thermometer# Cooler #	Receipt Temp Corrected (°C)	7=Na2S2O3
Date & TimeBy:N	SampleBlankCooler	**All Temps are Corrected Values** 9=NaHSO4
Printed Name	Signature Company Date Time	Notes:
Relinquished by ETMAN BASTERLING &	ECS 91/22 17:30	If there are any questions or
Received by FRIEX		concerns for any of the
Relinquished by TROEX		Samples, please call
Received by MMM TMMM 80	CESS TOTAL IVIN - FOUNDATION	ETHAN CASKERLING
Relinquished by		
Received by		662-213-6698
DCN# F316 Rev.#5	Physical Address: 6500 Sunplex Drive, Ocean Springs MS 39564	COOPER # 1882 -01.0
	(

PO Box 1410, Ocean Springs, MS 39566-1410 (228) 875-6420 FAX (228) 875-6423 www.micromethodslab.com

Chain of Custody Record

Lab ID# MS00021 LELAP ID # 01960 TNI ID # TNI01397

Print Form

M-M Lab wo # 220055 (2

Company Name: Choctaw Generation Limited Partnership LLLP Project Manager:	Project Manager:	Turn Around Time & Reporting
Address: DODA J		Our normal turn around time is 10 working days
2397 Fensacola Rd.	The last Cross #.	Normal *All rush order Phone
City: Ackerman State: MS Zip: 39735	Email Address :	requests must be —
Phone: 662-387-5758	Sampler Name Printed: ETHAN EASTER! INC.	Other* prior approvedEmail
Fax:	Sampler Name Signed:	QC Level: Level 1 Level 2 evel 3
	List Analyses Requested	Field Testing
Project Name: CGLP CCR	servative:	ID#
Project #: Annual	ontaine G) or site (C) Oride ny,Arse, Bernylli nium, balt mium, rcury denum enium Radium Radium & 228	DW = Drinking Water
Sample Identification Sample Date/Time Code	Flu Antimo Barium Cad Chrc Litt Me Molyb Sele Tha	S = Solid SO = Soil
CCR-5 (6)/72@:52 W	9 ×	t = Liquid
		A = Air O = Oil
		Preservation:
		2= H3PO4
		3=NaOH 4=ZnC4H10O6
		5=ZnC4H1006 & NaOH
		6=HNO3
-	Sample Blank Cooler	**All Temps are Corrected Values**
Printed Name	Signature Company Date Time	Notes:
Relinquished by ETWAN ENTERLING Sh	6/1/22 17	If there are any questions or
Received by Fell Ex		concerns for my of the
Relinquished by FeW.Ex		Samples, please call
Received by WWW TMWW XM	contition was mentioned	ETHAN STATE OF THE
Relinquished by		ONS TEN CING
Received by		62-213-629

Physical Address: 6500 Sunplex Drive, Ocean Springs MS 39564

July 15, 2022

Tina Tomek Micro-Methods Lab 6500 Sunplex Drive Ocean Springs, MS 39564

RE: Project: 2206051

Pace Project No.: 30496718

Dear Tina Tomek:

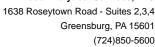
Enclosed are the analytical results for sample(s) received by the laboratory on June 10, 2022. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Greensburg

If you have any questions concerning this report, please feel free to contact me.

Sincerely,


David A. Pichette david.pichette@pacelabs.com (724)850-5617 Project Manager

and Politico

Enclosures

cc: Accounts Payable, Micro-Methods Lab

CERTIFICATIONS

Project: 2206051
Pace Project No.: 30496718

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET

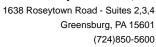
Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification Iowa Certification #: 391

Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235
Montana Certification #: Cert0082
Nebraska Certification #: NE-OS-29-14
Nevada Certification #: PA014572018-1
New Hampshire/TNI Certification #: 297617
New Jersey/TNI Certification #: PA051
New Mexico Certification #: PA01457
New York/TNI Certification #: 10888
North Carolina Certification #: 42706
North Dakota Certification #: R-190


Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282

South Dakota Certification
Tennessee Certification #: 02867

Ohio EPA Rad Approval: #41249

Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 460198 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C

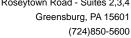
Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

SAMPLE SUMMARY

Project: 2206051
Pace Project No.: 30496718

Lab ID	Sample ID	Matrix	Date Collected	Date Received
30496718001	2206051-01	Water	06/01/22 10:56	06/10/22 10:15
30496718002	2206051-02	Water	05/31/22 11:45	06/10/22 10:15
30496718003	2206051-03	Water	05/31/22 15:24	06/10/22 10:15
30496718004	2206051-04	Water	06/01/22 08:58	06/10/22 10:15
30496718005	2206051-05	Water	06/01/22 11:48	06/10/22 10:15
30496718006	2206051-06	Water	06/01/22 11:27	06/10/22 10:15
30496718007	2206051-07	Water	06/01/22 00:00	06/10/22 10:15
30496718008	2206051-08	Water	05/31/22 14:00	06/10/22 10:15
30496718009	2206051-09	Water	05/31/22 16:20	06/10/22 10:15
30496718010	2206051-10	Water	05/31/22 10:15	06/10/22 10:15
30496718011	2206051-11	Water	05/31/22 14:53	06/10/22 10:15
30496718012	2206051-12	Water	05/31/22 09:52	06/10/22 10:15

(724)850-5600



SAMPLE ANALYTE COUNT

Project: 2206051
Pace Project No.: 30496718

Lab ID	Sample ID	Method	Analysts	Analytes Reported
30496718001	2206051-01	EPA 903.1	SLC	1
		EPA 904.0	VAL	1
30496718002	2206051-02	EPA 903.1	SLC	1
		EPA 904.0	VAL	1
30496718003	2206051-03	EPA 903.1	SLC	1
		EPA 904.0	VAL	1
30496718004	2206051-04	EPA 903.1	SLC	1
		EPA 904.0	VAL	1
30496718005	2206051-05	EPA 903.1	SLC	1
		EPA 904.0	VAL	1
30496718006	2206051-06	EPA 903.1	SLC	1
		EPA 904.0	VAL	1
30496718007	2206051-07	EPA 903.1	SLC	1
		EPA 904.0	VAL	1
30496718008	2206051-08	EPA 903.1	SLC	1
		EPA 904.0	VAL	1
30496718009	2206051-09	EPA 903.1	SLC	1
		EPA 904.0	VAL	1
30496718010	2206051-10	EPA 903.1	SLC	1
		EPA 904.0	VAL	1
30496718011	2206051-11	EPA 903.1	SLC	1
		EPA 904.0	VAL	1
30496718012	2206051-12	EPA 903.1	SLC	1
		EPA 904.0	VAL	1

PASI-PA = Pace Analytical Services - Greensburg

ANALYTICAL RESULTS - RADIOCHEMISTRY

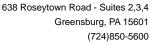
Project: 2206051
Pace Project No.: 30496718

8					
Lab ID: 30496 Site ID:	718001 Collected: 06/01/22 10:56 Sample Type:	Received:	06/10/22 10:15 M	latrix: Water	
Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Pace Analytical S	Gervices - Greensburg				
EPA 903.1	0.189 ± 0.268 (0.453) C:NA T:91%	pCi/L	07/13/22 15:31	13982-63-3	
Pace Analytical S	Services - Greensburg				
EPA 904.0	0.233 ± 0.265 (0.551) C:74% T:91%	pCi/L	07/06/22 13:11	15262-20-1	
		Received:	06/10/22 10:15 M	latrix: Water	
Site ID:	Sample Type:				
Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Pace Analytical S	Services - Greensburg				
EPA 903.1	0.674 ± 0.459 (0.632) C:NA T:90%	pCi/L	07/13/22 15:31	13982-63-3	
Pace Analytical S	Services - Greensburg				
EPA 904.0	1.20 ± 0.441 (0.633) C:76% T:90%	pCi/L	07/06/22 13:11	15262-20-1	
Lab ID: 30496	718003 Collected: 05/31/22 15:24	Received:	06/10/22 10:15 M	latrix: Water	
Site ID:	Sample Type:				
Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Pace Analytical S	Services - Greensburg				
EPA 903.1	0.221 ± 0.272 (0.443) C:NA T:93%	pCi/L	07/13/22 15:31	13982-63-3	
Pace Analytical S	Services - Greensburg				
EPA 904.0	0.488 ± 0.386 (0.766) C:75% T:93%	pCi/L	07/06/22 17:48	15262-20-1	
		Received:	06/10/22 10:15 M	latrix: Water	
Site ID:	Sample Type:				
Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Pace Analytical S	Services - Greensburg				
EPA 903.1	0.622 ± 0.395 (0.509) C:NA T:92%	pCi/L	07/13/22 15:31	13982-63-3	
Pace Analytical S	ervices - Greensburg				
EPA 904.0	0.334 ± 0.374 (0.782) C:73% T:92%	pCi/L	07/06/22 17:48	15262-20-1	
	Lab ID: 30496 Site ID: Method Pace Analytical S EPA 903.1 Pace Analytical S EPA 904.0 Lab ID: 30496 Site ID: Method Pace Analytical S EPA 903.1 Pace Analytical S EPA 904.0 Lab ID: 30496 Site ID: Method Pace Analytical S EPA 904.0 Lab ID: 30496 Site ID: Method Pace Analytical S EPA 903.1 Pace Analytical S EPA 903.1 Pace Analytical S EPA 904.0	Lab ID: 30496718001 Collected: 06/01/22 10:56 Sample Type:	Lab ID: 30496718001 Collected: 06/01/22 10:56 Site ID: Sample Type: Method Act ± Unc (MDC) Carr Trac Units Pace Analytical Services - Greensburg EPA 903.1 0.189 ± 0.268 (0.453) pCi/L C:NA T:91% Pace Analytical Services - Greensburg EPA 904.0 0.233 ± 0.265 (0.551) pCi/L C:74% T:91% Lab ID: 30496718002 Collected: 05/31/22 11:45 Received: Sample Type: Method Act ± Unc (MDC) Carr Trac Units Pace Analytical Services - Greensburg EPA 903.1 0.674 ± 0.459 (0.632) pCi/L C:NA T:90% Pace Analytical Services - Greensburg EPA 904.0 1.20 ± 0.441 (0.633) pCi/L C:76% T:90% Lab ID: 30496718003 Collected: 05/31/22 15:24 Received: Sample Type: Method Act ± Unc (MDC) Carr Trac Units Pace Analytical Services - Greensburg EPA 903.1 0.221 ± 0.472 (0.443) pCi/L C:NA T:93% Pace Analytical Services - Greensburg EPA 903.1 0.221 ± 0.272 (0.443) pCi/L C:NA T:93% Pace Analytical Services - Greensburg EPA 904.0 0.488 ± 0.386 (0.766) pCi/L C:75% T:93% Pace Analytical Services - Greensburg EPA 904.0 0.488 ± 0.386 (0.766) pCi/L C:75% T:93% Pace Analytical Services - Greensburg EPA 903.1 0.622 ± 0.395 (0.509) pCi/L C:NA T:92% Pace Analytical Services - Greensburg EPA 903.1 0.622 ± 0.395 (0.509) pCi/L C:NA T:92% Pace Analytical Services - Greensburg EPA 904.0 0.334 ± 0.374 (0.782) pCi/L	Lab ID: 30496718001 Collected: 06/01/22 10:56 Sample Type:	Lab ID: 30496718001 Collected: 06/01/22 10:56 Received: 06/10/22 10:15 Matrix: Water Sample Type: Method Act ± Unc (MDC) Carr Trac Units Analyzed CAS No. Pace Analytical Services - Greensburg EPA 903.1 0.189 ± 0.268 (0.453) pCi/L 07/13/22 15:31 13982-63-3 C:NA T:91% Pace Analytical Services - Greensburg EPA 904.0 0.233 ± 0.265 (0.551) pCi/L 07/06/22 13:11 15262-20-1 C:74% T:91% Lab ID: 30496718002 Collected: 05/31/22 11:45 Received: 06/10/22 10:15 Matrix: Water Site ID: Sample Type: Method Act ± Unc (MDC) Carr Trac Units Analyzed CAS No. Pace Analytical Services - Greensburg EPA 903.1 0.674 ± 0.459 (0.632) pCi/L 07/06/22 13:11 15262-20-1 C:76% T:90% Pace Analytical Services - Greensburg EPA 904.0 1.20 ± 0.441 (0.633) pCi/L 07/06/22 13:11 15262-20-1 C:76% T:90% Pace Analytical Services - Greensburg EPA 903.1 0.676 ± 0.441 (0.633) pCi/L 07/06/22 13:11 15262-20-1 C:76% T:90% Pace Analytical Services - Greensburg EPA 903.1 0.20 ± 0.441 (0.633) pCi/L 07/06/22 13:11 15262-20-1 C:76% T:90% Pace Analytical Services - Greensburg EPA 903.1 0.221 ± 0.272 (0.443) pCi/L 07/13/22 15:31 13982-63-3 C:NA T:93% Pace Analytical Services - Greensburg EPA 903.1 0.221 ± 0.272 (0.443) pCi/L 07/13/22 15:31 13982-63-3 C:NA T:93% Pace Analytical Services - Greensburg EPA 904.0 0.488 ± 0.386 (0.766) pCi/L 07/06/22 17:48 15262-20-1 C:75% T:93% Lab ID: 30496718004 Collected: 06/01/22 08:58 Received: 06/10/22 10:15 Matrix: Water Site ID: Sample Type: Method Act ± Unc (MDC) Carr Trac Units Analyzed CAS No. Pace Analytical Services - Greensburg EPA 903.1 0.622 ± 0.395 (0.509) pCi/L 07/13/22 15:31 13982-63-3 C:NA T:92% Pace Analytical Services - Greensburg EPA 903.1 0.622 ± 0.395 (0.509) pCi/L 07/13/22 15:31 13982-63-3 C:NA T:92% Pace Analytical Services - Greensburg EPA 904.0 0.334 ± 0.374 (0.782) pCi/L 07/06/22 17:48 15262-20-1

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

ANALYTICAL RESULTS - RADIOCHEMISTRY

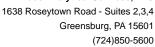

 Project:
 2206051

 Pace Project No.:
 30496718

Sample: 2206051-05 PWS:	Lab ID: 30496718 Site ID:	3005 Collected: 06/01/22 11:48 Sample Type:	Received:	06/10/22 10:15	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Serv	rices - Greensburg				
Radium-226	EPA 903.1	0.196 ± 0.353 (0.623) C:NA T:90%	pCi/L	07/13/22 15:31	13982-63-3	
	Pace Analytical Serv	rices - Greensburg				
Radium-228	EPA 904.0	0.134 ± 0.325 (0.725) C:71% T:90%	pCi/L	07/06/22 17:49	15262-20-1	
Sample: 2206051-06	Lab ID: 30496718		Received:	06/10/22 10:15	Matrix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Serv	rices - Greensburg			_	
Radium-226	EPA 903.1	-0.0447 ± 0.291 (0.630) C:NA T:90%	pCi/L	07/13/22 15:31	13982-63-3	
	Pace Analytical Serv	rices - Greensburg				
Radium-228	EPA 904.0	0.679 ± 0.423 (0.795) C:74% T:90%	pCi/L	07/06/22 17:49	15262-20-1	
Sample: 2206051-07	Lab ID: 30496718	8007 Collected: 06/01/22 00:00	Received:	06/10/22 10:15	Matrix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Serv	rices - Greensburg			-!-	
Radium-226	EPA 903.1	0.415 ± 0.348 (0.498) C:NA T:96%	pCi/L	07/13/22 15:31	13982-63-3	
	Pace Analytical Serv	rices - Greensburg				
Radium-228	EPA 904.0	0.682 ± 0.376 (0.674) C:78% T:96%	pCi/L	07/06/22 17:49	15262-20-1	
Sample: 2206051-08	Lab ID: 30496718	3008 Collected: 05/31/22 14:00	Received:	06/10/22 10:15 N	Matrix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Serv	rices - Greensburg				
Radium-226	EPA 903.1	-0.0852 ± 0.264 (0.601) C:NA T:86%	pCi/L	07/13/22 15:31	13982-63-3	
	Pace Analytical Serv	rices - Greensburg				
Radium-228	EPA 904.0	0.119 ± 0.325 (0.730) C:76% T:86%	pCi/L	07/06/22 17:49	15262-20-1	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.


ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: 2206051
Pace Project No.: 30496718

Sample: 2206051-09 PWS:	Lab ID: 304967 Site ID:	18009 Collected: 05/31/22 16:20 Sample Type:	Received:	06/10/22 10:15 I	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
. didiliotoro		rvices - Greensburg		7		
Radium-226	EPA 903.1	0.522 ± 0.367 (0.468) C:NA T:87%	pCi/L	07/13/22 15:49	13982-63-3	
	Pace Analytical Se	rvices - Greensburg				
Radium-228	EPA 904.0	1.47 ± 0.518 (0.737) C:81% T:87%	pCi/L	07/06/22 17:50	15262-20-1	
Sample: 2206051-10 PWS:	Lab ID: 304967 Site ID:	18010 Collected: 05/31/22 10:15 Sample Type:	Received:	06/10/22 10:15 I	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Se	rvices - Greensburg		·		
Radium-226	EPA 903.1	0.363 ± 0.311 (0.421) C:NA T:89%	pCi/L	07/13/22 15:49	13982-63-3	
	Pace Analytical Se	rvices - Greensburg				
Radium-228	EPA 904.0	0.888 ± 0.430 (0.730) C:77% T:89%	pCi/L	07/06/22 17:50	15262-20-1	
Sample: 2206051-11	Lab ID: 304967	18011 Collected: 05/31/22 14:53	Received:	06/10/22 10:15 I	Matrix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Se	rvices - Greensburg				
Radium-226	EPA 903.1	0.202 ± 0.286 (0.485) C:NA T:92%	pCi/L	07/13/22 15:49	13982-63-3	
	Pace Analytical Se	rvices - Greensburg				
Radium-228	EPA 904.0	0.639 ± 0.337 (0.563) C:75% T:92%	pCi/L	07/06/22 17:50	15262-20-1	
Sample: 2206051-12 PWS:	Lab ID: 304967 Site ID:	18012 Collected: 05/31/22 09:52 Sample Type:	Received:	06/10/22 10:15 I	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Se	rvices - Greensburg				
Radium-226	EPA 903.1	0.0814 ± 0.253 (0.489) C:NA T:86%	pCi/L	07/13/22 15:49	13982-63-3	
	Pace Analytical Se	rvices - Greensburg				
Radium-228	EPA 904.0	0.749 ± 0.417 (0.747) C:77% T:86%	pCi/L	07/06/22 17:50	15262-20-1	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALITY CONTROL - RADIOCHEMISTRY

Project: 2206051
Pace Project No.: 30496718

QC Batch: 511739 Analysis Method: EPA 903.1

QC Batch Method: EPA 903.1 Analysis Description: 903.1 Radium-226

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 30496718001, 30496718002, 30496718003, 30496718004, 30496718005, 30496718006, 30496718007,

30496718008, 30496718009, 30496718010, 30496718011, 30496718012

METHOD BLANK: 2480201 Matrix: Water

Associated Lab Samples: 30496718001, 30496718002, 30496718003, 30496718004, 30496718005, 30496718006, 30496718007,

30496718008, 30496718009, 30496718010, 30496718011, 30496718012

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.165 ± 0.303 (0.541) C:NA T:87%
 pCi/L
 07/13/22 15:14

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project: 2206051
Pace Project No.: 30496718

QC Batch: 511740 Analysis Method: EPA 904.0

QC Batch Method: EPA 904.0 Analysis Description: 904.0 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 30496718001, 30496718002, 30496718003, 30496718004, 30496718005, 30496718006, 30496718007,

30496718008, 30496718009, 30496718010, 30496718011, 30496718012

METHOD BLANK: 2480203 Matrix: Water

Associated Lab Samples: 30496718001, 30496718002, 30496718003, 30496718004, 30496718005, 30496718006, 30496718007,

30496718008, 30496718009, 30496718010, 30496718011, 30496718012

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.377 ± 0.322 (0.642) C:77% T:87%
 pCi/L
 07/06/22 13:23

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 2206051
Pace Project No.: 30496718

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Act - Activity

Date: 07/15/2022 03:01 PM

Unc - Uncertainty: For Safe Drinking Water Act (SDWA) analyses, the reported Unc. Is the calculated Count Uncertainty (95% confidence interval) using a coverage factor of 1.96. For all other matrices (non-SDWA), the reported Unc. is the calculated Expanded Uncertainty (aka Combined Standard Uncertainty, CSU), reported at the 95% confidence interval using a coverage factor of 1.96.

Gamma Spec: The Unc. reported for all gamma-spectroscopy analyses (EPA 901.1), is the calculated Expanded Uncertainty (CSU) at the 95.4% confidence interval, using a coverage factor of 2.0.

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

SUBCONTRACT ORDER

Sending Laboratory:

Micro-Methods Laboratory, Inc.

6500 Sunplex Drive

Ocean Springs, MS 39564 Phone: 228.875.6420

Fax: 228.875.6423

Project Manager: Teresa Meins

Subcontracted Laboratory:

Pace Analytical-7

1638 Roseytown Rd. Suites 2, 3, 4

Greensburg, PA 15601 Phone: (724) 850-5600

Fax: -

WO#: 30496718

Work Order: 2206051

Analysis	Due	Expires Comments	
Sample ID: 2206051-01 <i>Water</i>	Sampled: 06/01/202	22 10:56 Sample Name:	MW-7 00
Radium, Total 226 & 228 by EPA 903.1 &	90 06/10/2022 06/29	9/2022 10:56	•
Containers Supplied: 1000mL Plastic w/HNO3 (A) 1000mL Plastic	c w/HNO3 (B)		
Sample ID: 2206051-02 Water	Sampled: 05/31/202	22 11:45 Sample Name:	MW-9 502
Radium, Total 226 & 228 by EPA 903.1 &	90 06/10/2022 06/28	3/2022 11:45	3
Containers Supplied: 1000mL Plastic w/HNO3 (A) 1000mL Plastic	c w/HNO3 (B)		
Sample ID: 2206051-03 Water	Sampled: 05/31/202	?2 15:24 Sample Name:	MW-12 003
Radium, Total 226 & 228 by EPA 903.1 & 9	90 06/10/2022 06/28	3/2022 15:24	-
Containers Supplied: 1000mL Plastic w/HNO3 (A) 1000mL Plastic	c w/HNO3 (B)		
Sample ID: 2206051-04 <i>Water</i>	Sampled: 06/01/202	22 08:58 Sample Name:	MW-13 COL
Radium, Total 226 & 228 by EPA 903.1 & 9	90 06/10/2022 06/29	0/2022 08:58	
Containers Supplied: 1000mL Plastic w/HNO3 (A) 1000mL Plastic	w/HNO3 (B)		
Sample ID: 2206051-05 <i>Water</i>	Sampled: 06/01/202	22 11:48 Sample Name:	MW-14 005
Radium, Total 226 & 228 by EPA 903.1 & 9	90 06/10/2022 06/29	0/2022 11:48	1.1-6-10 10 50
smah romeh 171	72 <u>~ 1630 </u>	<u> </u>	4/7/22- 1630
Released By	Date	Received By Adv	Date 10-10-22-10:15
Released By	Date	Received By	Date
Released By	Date	Received By	Date
Released By	Date	Received By	Date
Released By	Date	Received By	Date
	P	age 1 of 3	Page 11 of 15

SUBCONTRACT ORDER

(Continued)

Work Order: 2206051 (Continued)

Analysis	Due	Expires	Comments		
Containers Supplied: 1000mL Plastic w/HNO3 (A) 1000mL Plastic	w/HNO3 (B)				
Sample ID: 2206051-06 <i>Water</i>	Sampled: 06/	01/2022 11:27	Sample Name:	Field Blank	006
Radium, Total 226 & 228 by EPA 903.1 & 9	0 06/10/2022	06/29/2022 11:27			
Containers Supplied: 1000mL Plastic w/HNO3 (A) 1000mL Plastic	w/HNO3 (B)				
Sample ID: 2206051-07 <i>Water</i>	Sampled: 06/	01/2022 00:00	Sample Name:	Duplicate	007
Radium, Total 226 & 228 by EPA 903.1 & 9	0 06/10/2022	06/29/2022 00:00			
Containers Supplied: 1000mL Plastic w/HNO3 (A) 1000mL Plastic	w/HNO3 (B)				
Sample ID: 2206051-08 <i>Water</i>	Sampled: 05/	31/2022 14:00	Sample Name:	OW-2	800
Radium, Total 226 & 228 by EPA 903.1 & 9	0 06/10/2022	06/28/2022 14:00			
Containers Supplied: 1000mL Plastic w/HNO3 (A) 1000mL Plastic	w/HNO3 (B)				
Sample ID: 2206051-09 <i>Water</i>	Sampled: 05/	31/2022 16:20	Sample Name:	CCR-2	009
Radium, Total 226 & 228 by EPA 903.1 & 9	0 06/10/2022	06/28/2022 16:20			
Containers Supplied: 1000mL Plastic w/HNO3 (A) 1000mL Plastic	w/HNO3 (B)				
Sample ID: 2206051-10 <i>Water</i>	Sampled: 05/	31/2022 10:15	Sample Name:	CCR-3	010
Radium, Total 226 & 228 by EPA 903.1 & 9	0 06/10/2022	06/28/2022 10:15			
Containers Supplied: 1000mL Plastic w/HNO3 (A) 1000mL Plastic	w/HNO3 (B)				
Sample ID: 2206051-11 <i>Water</i>	Sampled: 05/	31/2022 14:53	Sample Name:	CCR-4	0(1
Radium, Total 226 & 228 by EPA 903.1 & 9	0 06/10/2022	06/28/2022 14:53			
Containers Supplied: 1000mL Plastic w/HNO3 (A) 1000mL Plastic	w/HNO3 (B)				
Sample ID: 2206051-12 <i>Water</i>	Sampled: 06/	01/2022 09:52	Sample Name:	CCR-5	012
Smah Jomeh	6/7/22 A	1430 0	V/5	l l	1/7/22/ 1630
Released By	Date	Receiv	red By		Date (2-10-20 10:11
<i>V</i> //>			4 Chon	<u> </u>	(10-20-10:1)
Released By	Date	Receiv	ed By	8	Date
Released By	Date	Receiv	ed By		Date
Released By	Date			1 96718	
Released By	Date		1: DAP .IENT: MICROME	Due Date: 07, ETHOD	/01/22
		Page 2 or J			

SUBCONTRACT ORDER

(Continued)

Work Order: 2206051 (Continued)

Analysis		Due	Expires	Comments		
Sample ID: 2206051-12	Water S	Sampled: 06/0	01/2022 09:52	Sample Name: Co	CR-5	
Radium, Total 226 & 228 by EPA	903.1 & 90	06/10/2022	06/29/2022 09:52			
Containers Supplied: 1000ml Plastic w/HNO3 (A) 1000	Oml Plastic v	v/HNO3 (B)				

WO#:30496718

Due Date: 07/01/22

CLIENT: MICROMETHOD

Smahsomeh	4/7/22/2 1630	WS.	4/7/2201630
Released By //	Date	Received By	Date
MS		Z Chdry	6-10-22 10:15
Released By	Date	Received By	Date
Released By	Date	Received By	Date
Released By	Date	Received By	Date
Released By	Date	Received By	Date

Pittsburgh Lab Sample Condi		•				
Face Analytical Client Name:	<u>Vui</u>	0-1	re	Thods Project #	,	
Courier: Fed Ex DUPS USPS Clien	f 🗆	Comm	ercial	Pace Other	,	
Tracking #: 17 367 063 03 10996	546	ئارىد ئارىد	123	Pace Other Label 36 Label 36		
Custody Seal on Cooler/Box Present: yes	<u></u>			s intact: yes no	i	
Thermometer Used				t Blue (None		
Cooler Temperature Observed Temp		- °C		ection Factor: C Final Temp: C		
Temp should be above freezing to 6°C		-				
				pH paper Lot# Date and Initials of person examining contents:		
Comments:	Yes	No	N/A	70,09411		
Chain of Custody Present:	Ι <u>ν</u>	<u> </u>		1.	Distribute a programme	es e tatines
Chain of Custody Filled Out:	V	ļ	<u> </u>	2.		
Chain of Custody Relinquished:	V	ļ.,	ļ	3.		$ \mathbf{\Sigma} $
Sampler Name & Signature on COC:	!	//		4.	PM: DAP	
Sample Labels match COC:	<u> </u>	<u> </u>	<u></u>	5.		
-Includes date/time/ID Matrix:	W.	Τ	T-		Due Micromethod	(L)
Samples Arrived within Hold Time:	1	-		6.	2	
Short Hold Time Analysis (<72hr remaining):	-	\ <u>\</u>		7.	ETHO!	
Rush Turn Around Time Requested:	_	1		8.		M. Control
Sufficient Volume:	V			9	Dat	
Correct Containers Used:	1	ļ ,		10.	0	
-Pace Containers Used:		V	ļ		07	O
Containers Intact:	<u> </u>	ļ		11.) 21	
Orthophosphate field filtered	ļ			12.	07/01/22	
Hex Cr Aqueous sample field filtered			· /	13.		
Organic Samples checked for dechlorination:			V	14.		
Filtered volume received for Dissolved tests All containers have been checked for preservation.	1			15. 16. Added 25 mc HNO3 to 001 (me b	ottle)	ı
exceptions: VOA, coliform, TOC, O&G, Phenolics, Non-aqueous matrix	Radon	,				
All containers meet method preservation requirements.		/		Initial when Date/time of 6-16-22 16:42		
				Lot # of added preservative) L22-0625		
Headspace in VOA Vials (>6mm):				17.		
Trip Blank Present:			1	18.		
Trip Blank Custody Seals Present			/			
Rad Samples Screened < 0.5 mrem/hr	/			Initial when completed: Date 0-16-23 Survey Meter SN: 156-3		
Client Notification/ Resolution:						
Person Contacted:			Date/	Time: Contacted By:		
Comments/Resolution: Custuda Seals on bottle	5					
				n has been stored in ereports.		

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

FNV-FRM-GRUR-0072 ON 29Der2020

Pace Greensburg | 20496718

CLIENT: MICROMETHOD

Due Date: 07/01/22

file Number 144(20

es.

SPLC

MCKN

WGFU

VOAK

U69V

VG9T

H69A

GCNB

S69Q

USSA

BP35

BP3N

Bb3C

BP2U

BP2S

บเศล

BP1N

Besn

Bein

TGDA

USDA บธอA

8698

บรอ∧

TIĐA

SFDA

H19∀

Matrix

Line Tem

4 S ဖ

PM: DAP

Micro-methods laboration Face Analytical "

Client

2206051

Sample

Container Codes 12 ç Ë

OmL amber glass Na Thiosulfate

0mL amber glass unprserved

	Page 4
250mL amber glass unpr	AG3U
250mL amber glass H2S	AG3S
1L clear glass unpreserv	BG1U
åL amber glass Na Thios	AG1T
1L amber glass HCI	AG1H
1L amber glass H2SO4	AG1S
1 Gallon Jug	N O
100mL amber glass Na T	AG5T
100mL amber glass unpr	AG5U
1 Gallon Jug with HNO3	N/S

Non-aqueous liquid

占

250mL plastic unpreserved

500mL plastic unpreserved

500mL plastic H2SO4

BP2S BP2U

250ml plastic NAOH

BP3C

Kit for Volatile Solid

VOAK

5g Encore

/ Misc.

Plastic /

Wipe/Swab

Ziploc Bag

ZPLC

120mL Coliform Na Thiosulfate

1L plastic unpreserved

BP1U BP3S BP3N BP3U

1L plastic HNO3

BP1N SP5T

40mL clear VOA vial Na Thiosul

40mL clear VOA vial

VG9U VG9T

40mL clear VOA vial HCI

VG9H

40mL amber VOA vial H2SO4

DG9S

Glass

3

တ

ω

250mL plastic H2SO4 250mL plastic HNO3

> 500mL clear glass unpreserved 500mL amber glass unpreserve

8oz wide jar unpreserved

WGKU

Omit amber glass unpreserved

0mL amber glass H2SO4 clear glass unpreserved

4oz wide jar unpreserved

WGFU

BG2U AG2U

amber glass Na Thiosulfate

4oz amber wide jar

JGFU

12GN 1/2 Gallon Cubitainer

GCUB 1 Gallon Cubitainer

Water Solid

5

Page 15 of 15
Page 45 of 45

Mailing Address: PO Box 1410 Ocean Springs, MS 39566-1410 6500 Sunplex Drive Ocean Springs, MS 39564 228.875.6420 Phone 228.875.6423 Fax

October 05, 2022

Jim Ward Work Order #: 2209204

Choctaw Generation LP

Purchase Order #: RDH16277 - Yr 2022

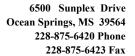
2391 Pensacola Rd.

Ackerman, MS 39735

RE: CGLP CCR Semi Annual

Enclosed are Micro-Methods Laboratory, Inc. results of analyses performed on samples received 09/14/2022 10:43. If you have any questions concerning this report, please feel free to contact the office.

Sincerely,


Mitch Spicer

Lab Director *Micro-Methods Laboratory, Inc.*

DISCLAIMER

The results only relate to the items or the sample and/or samples received by the laboratory. This report shall not be reproduced except in full, without the approval of the laboratory. All NELAP certified test methods performed meet the requirements of NELAC 2009 Standards. Any variances and/or deviations specific to this analytical report are referenced in the lab report using qualifiers and detailed explanations found in the case narrative.

Project: CGLP CCR Semi Annual

Project Number: [none]
Project Manager: Jim Ward

Reported: 10/05/2022 11:51

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date/Time Sampled	Sampled by	Date/Time Received
MW-9	2209204-01	Water	09/12/2022 14:00	Kirk Shelton	09/14/2022 10:43
OW-2	2209204-02	Water	09/12/2022 16:58	Kirk Shelton	09/14/2022 10:43
MW-13	2209204-03	Water	09/12/2022 11:50	Kirk Shelton	09/14/2022 10:43
MW-7	2209204-04	Water	09/13/2022 11:48	Kirk Shelton	09/14/2022 10:43
MW-14	2209204-05	Water	09/13/2022 10:56	Kirk Shelton	09/14/2022 10:43
Field Blank	2209204-06	Water	09/13/2022 10:51	Kirk Shelton	09/14/2022 10:43
Duplicate	2209204-07	Water	09/13/2022 00:00	Kirk Shelton	09/14/2022 10:43
MW-12	2209204-08	Water	09/12/2022 16:30	Kirk Shelton	09/14/2022 10:43
CCR-2	2209204-09	Water	09/12/2022 15:39	Kirk Shelton	09/14/2022 10:43
CCR-3	2209204-10	Water	09/12/2022 14:45	Kirk Shelton	09/14/2022 10:43
CCR-4	2209204-11	Water	09/12/2022 13:00	Kirk Shelton	09/14/2022 10:43
CCR-5	2209204-12	Water	09/13/2022 09:55	Kirk Shelton	09/14/2022 10:43

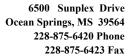
Choctaw Generation LP Project: CGLP CCR Semi Annual

 2391 Pensacola Rd.
 Project Number: [none]
 Reported:

 Ackerman MS, 39735
 Project Manager: Jim Ward
 10/05/2022 11:51

Sample Receipt Conditions

Date/Time Received: 9/14/2022 10:43:00AM Shipped by: Fed Ex

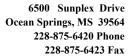

Received by: Sarah E. Tomek Submitted by: Ethan Easterling

Date/Time Logged: 9/14/2022 11:13:00AM Logged by: Sarah E. Tomek

Cooler ID: client cooler #1 Receipt Temperature: 0.8 °C

Cooler Custody Seals Present	Yes	Received on Ice but Not Frozen	Yes
Containers Intact	Yes	No Ice, Short Trip	No
COC/Labels Agree	Yes	Obvious Contamination	No
Labels Complete	Yes	Rush to meet HT	No
COC Complete	Yes	Received within HT	Yes
Volatile Vial Headspace >6mm	No	Proper Containers for Analysis	Yes
Field Sheet/Instructions Included	No	Correct Preservation	Yes
Samples Rejected/Documented in Log	No	Adequate Sample for Analysis	Yes
Temp Taken From Temp Blank	Yes	Sample Custody Seals Present	Yes
Temp Taken From Sample Container	No	Samples Missing from COC/Cooler	No

Temp Taken From Cooler No
COC meets acceptance criteria Yes



Choctaw Generation LP Project: CGLP CCR Semi Annual

 2391 Pensacola Rd.
 Project Number: [none]
 Reported:

 Ackerman MS, 39735
 Project Manager: Jim Ward
 10/05/2022 11:51

Cooler ID: client cooler #2	_	Receipt Temperature: 0.9 °C	
Cooler Custody Seals Present	Yes	Received on Ice but Not Frozen	Yes
Containers Intact	Yes	No Ice, Short Trip	No
COC/Labels Agree	Yes	Obvious Contamination	No
Labels Complete	Yes	Rush to meet HT	No
COC Complete	Yes	Received within HT	Yes
Volatile Vial Headspace >6mm	No	Proper Containers for Analysis	Yes
Field Sheet/Instructions Included	No	Correct Preservation	Yes
Samples Rejected/Documented in Log	No	Adequate Sample for Analysis	Yes
Temp Taken From Temp Blank	Yes	Sample Custody Seals Present	Yes
Temp Taken From Sample Container	No	Samples Missing from COC/Cooler	No
Temp Taken From Cooler	No		
COC meets acceptance criteria	Yes		

Choctaw Generation LP Project: CGLP CCR Semi Annual

 2391 Pensacola Rd.
 Project Number: [none]
 Reported:

 Ackerman MS, 39735
 Project Manager: Jim Ward
 10/05/2022 11:51

Cooler Custody Seals Present	Yes	Received on Ice but Not Frozen	Yes
Containers Intact	Yes	No Ice, Short Trip	No
COC/Labels Agree	Yes	Obvious Contamination	No
Labels Complete	Yes	Rush to meet HT	No
COC Complete	Yes	Received within HT	Yes
Volatile Vial Headspace >6mm	No	Proper Containers for Analysis	Yes
Field Sheet/Instructions Included	No	Correct Preservation	Yes
Samples Rejected/Documented in Log	No	Adequate Sample for Analysis	Yes
Temp Taken From Temp Blank	Yes	Sample Custody Seals Present	Yes
Temp Taken From Sample Container	No	Samples Missing from COC/Cooler	No
Temp Taken From Cooler	No	Campica Missing Ham CCO, Cooler	140
COC meets acceptance criteria	Yes		
coc moste acceptance chema	100		

Project: CGLP CCR Semi Annual

Project Number: [none]
Project Manager: Jim Ward

Reported: 10/05/2022 11:51

CASE NARRATIVE SUMMARY

All reported results are within Micro-Methods Laboratory, Inc.defined laboratory quality control objectives unless detailed in narrative summary or identified as qualifications. NOTE: All results listed on this report are calculated on a wet weight basis (as received by the laboratory) unless otherwise noted in the analysis qualification sections.

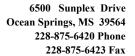
Summary Comments:

See attached results from Sub-Contract Laboratory

Anions-SM 4110B 2011

Qualifiers:

DL-5 Dilution performed due to matrix interference


Chloride, Sulfate as SO4

2209204-01[MW-9], 2209204-02[OW-2], 2209204-08[MW-12], 2209204-04[MW-7], 2209204-10[CCR-3], 2209204-12[CCR-5], 2209204-04[MW-7], 2209204

L1 LCS and/or LCSD Recovery Limit exceeded.

Chloride

2I15019-BSD1

Project: CGLP CCR Semi Annual

Project Number: [none]
Project Manager: Jim Ward

Reported: 10/05/2022 11:51

MW-9

2209204-01 (Water)

					/					
							Date Time	Date Time		
Analyte	Result	MRL	Units	Dil	Batch	Analyst	Prepared	Analyzed	Method	Qualifiers
Classical Chemistry Paramet	ers									
Chloride	320	10.0	mg/L	20.0	2115019	DLW	09/15/2022 02:23	09/15/2022 02:23	SM 4110B 2011	DL-5
Sulfate as SO4	97.3	50.0	"	10.0	"	DLW		09/15/2022 02:58	n .	DL-5
Fluoride	0.34	0.22	"	1.0	2114052	ASC	09/14/2022 13:00	09/14/2022 16:27	SM 4500-F C 2011	
Total Dissolved Solids	764	1	"	"	2120033	DLW	09/16/2022 16:25	09/19/2022 16:00	SM 2540 C-2015	
Metals by EPA 200 Series Me	thods ICP-AES									
Barium 455.403 [Radial]	0.081	0.010	mg/L	1.0	2116012	CLV	09/16/2022 09:45	09/19/2022 15:46	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	ND	0.050	"	"	II .	CLV			"	
Calcium 315.887 [Radial]	33.2	0.050	"	"	"	CLV		•	"	
Lithium 610.362 [Axial]	0.063	0.040	"	"	"	CLV	*		"	
Metals by EPA 200 Series Me	thods ICP-MS [Analysis N	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	2116010	GWG		09/19/2022 13:10	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	"	II .	GWG		"	"	
Beryllium [He]	0.00369	0.00100	"	"	"	GWG		"	"	
Cadmium [He]	ND	0.00100	"	"	"	GWG	*		"	
Chromium [He]	ND	0.00100	"	"	"	GWG			"	
Cobalt [He]	0.0137	0.00100	"	"	"	GWG			"	
Lead [He]	ND	0.00100	"	"	"	GWG			"	
Molybdenum [He]	ND	0.00100	"	"	"	GWG			"	
Selenium [NG]	ND	0.00500	"	"	"	GWG			"	

Project: CGLP CCR Semi Annual

Project Number: [none]
Project Manager: Jim Ward

Reported: 10/05/2022 11:51

OW-2

2209204-02 (Water)

				.0- 02 (***	,					
Analista	Pagult	MRL	Units	Dil	Batch	Analyst	Date Time Prepared	Date Time Analyzed	Matha	Qualifier
Analyte	Result	IVIRL	Units	DII	Batch	Analyst	Fiepaieu	Allalyzeu	Method	Qualifiers
Classical Chemistry Parame	eters									
Chloride	85.9	2.00	mg/L	4.0	2115019	DLW	09/15/2022 02:23	09/15/2022 03:33	SM 4110B 2011	DL-5
Sulfate as SO4	94.2	20.0	"	"	"	DLW		"	"	DL-5
Fluoride	0.24	0.22	"	1.0	2114052	ASC	09/14/2022 13:00	09/14/2022 16:27	SM 4500-F C 2011	
Total Dissolved Solids	374	1	"	"	2120033	DLW	09/16/2022 16:25	09/19/2022 16:00	SM 2540 C-2015	
Metals by EPA 200 Series M	ethods ICP-AES									
Barium 455.403 [Radial]	0.046	0.010	mg/L	1.0	2116012	CLV	09/16/2022 09:45	09/19/2022 15:57	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	ND	0.050	"	"	"	CLV			"	
Calcium 315.887 [Radial]	38.4	0.050	"	"	"	CLV		"	"	
Lithium 610.362 [Axial]	0.060	0.040	"	"	"	CLV				
Metals by EPA 200 Series M	ethods ICP-MS [Analysis N	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	2116010	GWG		09/19/2022 13:29	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	"	"	GWG			"	
Beryllium [He]	ND	0.00100	"	"	"	GWG		"	"	
Cadmium [He]	ND	0.00100	"	"	"	GWG			"	
Chromium [He]	ND	0.00100	"	"	"	GWG			"	
Cobalt [He]	ND	0.00100	"	"	"	GWG			"	
Lead [He]	ND	0.00100	"	"	"	GWG			"	
Molybdenum [He]	ND	0.00100	"	"	n n	GWG			"	
Selenium [NG]	ND	0.00500	"	"	"	GWG			"	

Project: CGLP CCR Semi Annual

Project Number: [none]
Project Manager: Jim Ward

Reported: 10/05/2022 11:51

MW-13

2209204-03 (Water)

				.0- 00 (110	,					
Analyte	Result	MRL	Units	Dil	Batch	Analyst	Date Time Prepared	Date Time Analyzed	Method	Qualifiers
		IVII \L	Office	Dii	Daton	Allalyst		,254	Method	Qualificis
Classical Chemistry Parame	ters									
Chloride	4.14	0.500	mg/L	1.0	2115019	DLW	09/15/2022 02:23	09/15/2022 04:43	SM 4110B 2011	
Sulfate as SO4	7.62	5.00	"	"	"	DLW		"	"	
Fluoride	ND	0.22	"	"	2114052	ASC	09/14/2022 13:00	09/14/2022 16:27	SM 4500-F C 2011	
Total Dissolved Solids	126	1	"	"	2120033	DLW	09/16/2022 16:25	09/19/2022 16:00	SM 2540 C-2015	
Metals by EPA 200 Series Me	ethods ICP-AES	}								
Barium 455.403 [Radial]	0.185	0.010	mg/L	1.0	2116012	CLV	09/16/2022 09:45	09/19/2022 16:01	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	ND	0.050	"	"	"	CLV			"	
Calcium 315.887 [Radial]	20.0	0.050	"	"	"	CLV			"	
Lithium 610.362 [Axial]	ND	0.040	"	"	"	CLV		"	•	
Metals by EPA 200 Series Me	ethods ICP-MS	[Analysis N	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	2116010	GWG	n .	09/19/2022 13:35	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	"	"	GWG			"	
Beryllium [He]	ND	0.00100	"	"	"	GWG			"	
Cadmium [He]	ND	0.00100	"	"	"	GWG			"	
Chromium [He]	ND	0.00100	"	"	"	GWG			"	
Cobalt [He]	ND	0.00100	"	"	"	GWG			"	
Lead [He]	ND	0.00100	"	"	"	GWG			"	
Molybdenum [He]	ND	0.00100	"	"	"	GWG			"	
Selenium [NG]	ND	0.00500	"	"	"	GWG			"	

Project: CGLP CCR Semi Annual

Project Number: [none]
Project Manager: Jim Ward

Reported: 10/05/2022 11:51

MW-7

2209204-04 (Water)

Analyte	Result	MRL	Units	Dil	Batch	Analyst	Date Time Prepared	Date Time Analyzed	Method	Qualifiers
Classical Chemistry Parame	ters									
Chloride	3.50	0.500	mg/L	1.0	2115019	DLW	09/15/2022 02:23	09/15/2022 05:18	SM 4110B 2011	
Sulfate as SO4	40.2	20.0	"	4.0	"	DLW				DL-5
Fluoride	ND	0.22	"	1.0	2114052	ASC	09/14/2022 13:00	09/14/2022 16:27	SM 4500-F C 2011	
Total Dissolved Solids	152	1	"	"	2120033	DLW	09/16/2022 16:25	09/19/2022 16:00	SM 2540 C-2015	
Metals by EPA 200 Series Me	thods ICP-AES	3								
Barium 455.403 [Radial]	0.078	0.010	mg/L	1.0	2116012	CLV	09/16/2022 09:45	09/19/2022 16:04	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	ND	0.050	"	"	"	CLV			"	
Calcium 315.887 [Radial]	31.5	0.050	"	"	"	CLV		"		
Lithium 610.362 [Axial]	ND	0.040	"	"	"	CLV		•	"	
Metals by EPA 200 Series Me	ethods ICP-MS	[Analysis N	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	2116010	GWG	"	09/19/2022 13:41	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	"	"	GWG		•	"	
Beryllium [He]	ND	0.00100	"	"	"	GWG			"	
Cadmium [He]	ND	0.00100	"	"		GWG			"	
Chromium [He]	ND	0.00100	"	•	"	GWG			m .	
Cobalt [He]	ND	0.00100	"		"	GWG			n .	
Lead [He]	ND	0.00100	"	"	"	GWG			"	
Molybdenum [He]	ND	0.00100	"	"	"	GWG			"	
Selenium [NG]	ND	0.00500	u .	"	"	GWG			ıı	

Project: CGLP CCR Semi Annual

Project Number: [none]
Project Manager: Jim Ward

Reported: 10/05/2022 11:51

MW-14

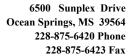
2209204-05 (Water)

				.0- 00 (110	,					
	Danult	MDI	Lluita	Dil	Datab	A made of t	Date Time	Date Time	Madical	01:6
Analyte	Result	MRL	Units	Dil	Batch	Analyst	Prepared	Analyzed	Method	Qualifiers
Classical Chemistry Parameter	rs									
Chloride	18.3	0.500	mg/L	1.0	2115019	DLW	09/15/2022 02:23	09/15/2022 09:16	SM 4110B 2011	
Sulfate as SO4	9.61	5.00	"	"	"	DLW			"	
Fluoride	ND	0.22	"	"	2114052	ASC	09/14/2022 13:00	09/14/2022 16:27	SM 4500-F C 2011	
Total Dissolved Solids	75	1	"	"	2120033	DLW	09/16/2022 16:25	09/19/2022 16:00	SM 2540 C-2015	
Metals by EPA 200 Series Meth	ods ICP-AES	3								
Barium 455.403 [Radial]	0.012	0.010	mg/L	1.0	2116012	CLV	09/16/2022 09:45	09/19/2022 16:08	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	ND	0.050	"	"	"	CLV			"	
Calcium 315.887 [Radial]	0.580	0.050	"	"	· ·	CLV			"	
Lithium 610.362 [Axial]	ND	0.040	"	"	"	CLV			•	
Metals by EPA 200 Series Meth	ods ICP-MS	[Analysis N	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	2116010	GWG		09/19/2022 13:47	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	"	"	GWG			"	
Beryllium [He]	ND	0.00100	"	"	"	GWG			"	
Cadmium [He]	ND	0.00100	"	"	"	GWG			"	
Chromium [He]	ND	0.00100	"	"	"	GWG		09/23/2022 13:14	"	
Cobalt [He]	ND	0.00100	"	"	"	GWG	"	09/19/2022 13:47	n n	
Lead [He]	ND	0.00100	"	"	"	GWG			"	
Molybdenum [He]	ND	0.00100	"	"	"	GWG			"	
Selenium [NG]	ND	0.00500	"	"	"	GWG			"	

Choctaw Generation LP 2391 Pensacola Rd.

Ackerman MS, 39735

Project: CGLP CCR Semi Annual


Project Number: [none]
Project Manager: Jim Ward

Reported: 10/05/2022 11:51

Field Blank

2209204-06 (Water)

			22032	04-00 (440	ater <i>j</i>					
Analyte	Result	MRL	Units	Dil	Batch	Analyst	Date Time Prepared	Date Time Analyzed	Method	Qualifiers
Classical Chemistry Parameters								<u> </u>		
Chloride	ND	0.500	mg/L	1.0	2115019	DLW	09/15/2022 02:23	09/15/2022 09:51	SM 4110B 2011	
Sulfate as SO4	ND	5.00	"	"	"	DLW			"	
Fluoride	ND	0.22	"	"	2114052	ASC	09/14/2022 13:00	09/14/2022 16:27	SM 4500-F C 2011	
Total Dissolved Solids	3	1	"	"	2120033	DLW	09/16/2022 16:25	09/19/2022 16:00	SM 2540 C-2015	
Metals by EPA 200 Series Method	ds ICP-AES	3								
Barium 455.403 [Radial]	ND	0.010	mg/L	1.0	2116012	CLV	09/16/2022 09:45	09/19/2022 16:12	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	ND	0.050	"	"	"	CLV			"	
Calcium 315.887 [Radial]	ND	0.050	"	"	"	CLV			"	
Lithium 610.362 [Axial]	ND	0.040	"	"	· ·	CLV			"	
Metals by EPA 200 Series Method	ds ICP-MS	[Analysis N	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	2116010	GWG	"	09/19/2022 14:16	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	"	"	GWG			"	
Beryllium [He]	ND	0.00100	"	"	· ·	GWG			"	
Cadmium [He]	ND	0.00100	"	"	"	GWG			"	
Chromium [He]	ND	0.00100	"	"	"	GWG			II	
Cobalt [He]	ND	0.00100	"	"	"	GWG			n .	
Lead [He]	ND	0.00100	"	"	"	GWG			n .	
Molybdenum [He]	ND	0.00100	"		"	GWG			"	
Selenium [NG]	ND	0.00500	"	"	"	GWG			**	

Project: CGLP CCR Semi Annual

Project Number: [none]
Project Manager: Jim Ward

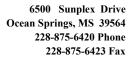
Reported: 10/05/2022 11:51

Duplicate

2209204-07 (Water)

				.0- 01 (***	,					
Analyte	Result	MRL	Units	Dil	Batch	Analyst	Date Time Prepared	Date Time Analyzed	Method	Qualifiers
		IVII XL	Office	Dii	Daton	Allalyst		, 254	INICUIOU	Qualificis
Classical Chemistry Parame	ters									
Chloride	18.2	0.500	mg/L	1.0	2115019	DLW	09/15/2022 02:23	09/15/2022 10:26	SM 4110B 2011	
Sulfate as SO4	9.96	5.00	"	"	"	DLW		"	"	
Fluoride	ND	0.22	"	"	2114052	ASC	09/14/2022 13:00	09/14/2022 16:27	SM 4500-F C 2011	
Total Dissolved Solids	73	1	"	"	2120033	DLW	09/16/2022 16:25	09/19/2022 16:00	SM 2540 C-2015	
Metals by EPA 200 Series Me	thods ICP-AES	;								
Barium 455.403 [Radial]	0.012	0.010	mg/L	1.0	2116012	CLV	09/16/2022 09:45	09/19/2022 16:15	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	ND	0.050	"	"	"	CLV			"	
Calcium 315.887 [Radial]	0.601	0.050	"	"	"	CLV			"	
Lithium 610.362 [Axial]	ND	0.040	"	"	· ·	CLV			"	
Metals by EPA 200 Series Me	ethods ICP-MS	[Analysis N	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	2116010	GWG		09/19/2022 14:22	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	"	"	GWG			"	
Beryllium [He]	ND	0.00100	"	"	"	GWG			"	
Cadmium [He]	ND	0.00100	"	"	"	GWG			"	
Chromium [He]	ND	0.00100	"	"	"	GWG			m .	
Cobalt [He]	ND	0.00100	"	"	"	GWG			n .	
Lead [He]	ND	0.00100	"	"	"	GWG			m .	
Molybdenum [He]	ND	0.00100	"	"	"	GWG			"	
Selenium [NG]	ND	0.00500	"	"	"	GWG			"	

Project: CGLP CCR Semi Annual


Project Number: [none]
Project Manager: Jim Ward

Reported: 10/05/2022 11:51

MW-12

2209204-08 (Water)

							Date Time	Date Time		
Analyte	Result	MRL	Units	Dil	Batch	Analyst	Prepared	Analyzed	Method	Qualifiers
Classical Chemistry Parame	eters									
Chloride	38.0	2.00	mg/L	4.0	2115019	DLW	09/15/2022 02:23	09/15/2022 13:55	SM 4110B 2011	DL-5
Sulfate as SO4	41.7	20.0	"	"	II .	DLW		"	"	DL-5
Fluoride	ND	0.22	"	1.0	2114052	ASC	09/14/2022 13:00	09/14/2022 16:27	SM 4500-F C 2011	
Total Dissolved Solids	243	1	"	u	2120033	DLW	09/16/2022 16:25	09/19/2022 16:00	SM 2540 C-2015	
Metals by EPA 200 Series M	lethods ICP-AES									
Barium 455.403 [Radial]	0.189	0.010	mg/L	1.0	2116012	CLV	09/16/2022 09:45	09/19/2022 16:19	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	ND	0.050	"	"	II .	CLV		"	"	
Calcium 315.887 [Radial]	26.2	0.050	"	"	"	CLV			"	
Lithium 610.362 [Axial]	ND	0.040	"	"	"	CLV		•	"	
Metals by EPA 200 Series M	lethods ICP-MS [Analysis N	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	2116010	GWG	"	09/19/2022 14:28	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	"	"	GWG			"	
Beryllium [He]	ND	0.00100	"	"	"	GWG		"	•	
Cadmium [He]	ND	0.00100	"	"	"	GWG			"	
Chromium [He]	ND	0.00100	"	"	"	GWG			"	
Cobalt [He]	0.00467	0.00100	"	"	II .	GWG			"	
Lead [He]	ND	0.00100	"	"	"	GWG			"	
Molybdenum [He]	ND	0.00100	"	"	"	GWG			"	
Selenium [NG]	ND	0.00500	"	"	"	GWG			"	

Project: CGLP CCR Semi Annual

Project Number: [none]
Project Manager: Jim Ward

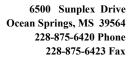
Reported: 10/05/2022 11:51

CCR-2

2209204-09 (Water)

				04-03 (440	utoi,					
Analyte	Result	MRL	Units	Dil	Batch	Analyst	Date Time Prepared	Date Time Analyzed	Method	Qualifiers
Classical Chemistry Paramete	ers					<u> </u>				
Chloride	2.50	0.500	mg/L	1.0	2115019	DLW	09/15/2022 02:23	09/15/2022 14:30	SM 4110B 2011	
Sulfate as SO4	10.3	5.00	"	"	"	DLW			"	
Fluoride	ND	0.22	"	"	2114052	ASC	09/14/2022 13:00	09/14/2022 16:27	SM 4500-F C 2011	
Total Dissolved Solids	132	1	"	"	2120033	DLW	09/16/2022 16:25	09/19/2022 16:00	SM 2540 C-2015	
Metals by EPA 200 Series Met	thods ICP-AES	}								
Barium 455.403 [Radial]	0.140	0.010	mg/L	1.0	2116012	CLV	09/16/2022 09:45	09/19/2022 16:22	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	ND	0.050	"	"	"	CLV			"	
Calcium 315.887 [Radial]	14.8	0.050	"	"	"	CLV			"	
Lithium 610.362 [Axial]	ND	0.040	"	"	"	CLV			"	
Metals by EPA 200 Series Met	thods ICP-MS	Analysis M	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	2116010	GWG	"	09/19/2022 14:35	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	"	"	GWG			"	
Beryllium [He]	ND	0.00100	"	"	"	GWG			"	
Cadmium [He]	ND	0.00100	"	"	"	GWG			"	
Chromium [He]	ND	0.00100	"	"	"	GWG			"	
Cobalt [He]	0.0103	0.00100	"	"	"	GWG			"	
Lead [He]	ND	0.00100	"	"	u	GWG			"	
Molybdenum [He]	ND	0.00100	"	"	"	GWG			"	
Selenium [NG]	ND	0.00500	"	"	"	GWG			"	

Project: CGLP CCR Semi Annual


Project Number: [none]
Project Manager: Jim Ward

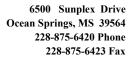
Reported: 10/05/2022 11:51

CCR-3

2209204-10 (Water)

				04-10 (AAC	101,					
Analyte	Result	MRL	Units	Dil	Batch	Analyst	Date Time Prepared	Date Time Analyzed	Method	Qualifiers
Classical Chemistry Parame	eters									
Chloride	5.30	0.500	mg/L	1.0	2115019	DLW	09/15/2022 02:23	09/15/2022 15:05	SM 4110B 2011	
Sulfate as SO4	164	50.0	"	10.0	"	DLW	"	09/16/2022 15:47	"	DL-5
Fluoride	ND	0.22	"	1.0	2114052	ASC	09/14/2022 13:00	09/14/2022 16:27	SM 4500-F C 2011	
Total Dissolved Solids	287	1	"	"	2120033	DLW	09/16/2022 16:25	09/19/2022 16:00	SM 2540 C-2015	
Metals by EPA 200 Series M	ethods ICP-AES									
Barium 455.403 [Radial]	0.078	0.010	mg/L	1.0	2116012	CLV	09/16/2022 09:45	09/19/2022 16:26	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	ND	0.050	"	"	"	CLV			"	
Calcium 315.887 [Radial]	27.9	0.050	"	"	"	CLV			"	
Lithium 610.362 [Axial]	0.084	0.040	"	"	"	CLV			"	
Metals by EPA 200 Series M	ethods ICP-MS	Analysis M	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	2116010	GWG	"	09/19/2022 14:53	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	"	"	GWG			"	
Beryllium [He]	ND	0.00100	"	u u	"	GWG			"	
Cadmium [He]	ND	0.00100	u .	"	"	GWG			"	
Chromium [He]	ND	0.00100	"	"		GWG			"	
Cobalt [He]	0.0122	0.00100	"	"	"	GWG				
Lead [He]	ND	0.00100	"	"	"	GWG			"	
Molybdenum [He]	ND	0.00100	"	"	"	GWG			"	
Selenium [NG]	ND	0.00500	"	"	"	GWG			"	

Project: CGLP CCR Semi Annual


Project Number: [none]
Project Manager: Jim Ward

Reported: 10/05/2022 11:51

CCR-4

2209204-11 (Water)

					,					
Auda	Result	MRL	Units	Dil	Batch	Analyst	Date Time Prepared	Date Time Analyzed	B.A. adda. a. al	Ovalifiana
Analyte		IVIRL	Units	ווט	Daton	Analyst	1 Tepared	Allalyzed	Method	Qualifiers
Classical Chemistry Parame	eters									
Chloride	7.28	0.500	mg/L	1.0	2115019	DLW	09/15/2022 02:23	09/15/2022 17:24	SM 4110B 2011	
Sulfate as SO4	19.4	5.00	"	"	"	DLW		"	"	
Fluoride	ND	0.22	"	"	2114052	ASC	09/14/2022 13:00	09/14/2022 16:27	SM 4500-F C 2011	
Total Dissolved Solids	174	1	"	"	2120033	DLW	09/16/2022 16:25	09/19/2022 16:00	SM 2540 C-2015	
Metals by EPA 200 Series M	ethods ICP-AES									
Barium 455.403 [Radial]	0.190	0.010	mg/L	1.0	2116012	CLV	09/16/2022 09:45	09/19/2022 16:30	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	ND	0.050	"	"	"	CLV			"	
Calcium 315.887 [Radial]	24.9	0.050	"	"	"	CLV			"	
Lithium 610.362 [Axial]	ND	0.040	"	"	"	CLV		"	"	
Metals by EPA 200 Series M	ethods ICP-MS [Analysis N	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	2116010	GWG		09/19/2022 15:00	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	"	"	GWG			"	
Beryllium [He]	ND	0.00100	"	"	"	GWG		"	"	
Cadmium [He]	ND	0.00100	"	"	"	GWG			"	
Chromium [He]	ND	0.00100	"	"	"	GWG			m .	
Cobalt [He]	0.00343	0.00100	"	"	u u	GWG			"	
Lead [He]	ND	0.00100	"	"	"	GWG			"	
Molybdenum [He]	ND	0.00100	"	"	"	GWG			"	
Selenium [NG]	ND	0.00500	"	"	"	GWG			"	

Project: CGLP CCR Semi Annual

Project Number: [none]
Project Manager: Jim Ward

Reported: 10/05/2022 11:51

CCR-5

2209204-12 (Water)

				04-12 (110						
							Date Time	Date Time		
Analyte	Result	MRL	Units	Dil	Batch	Analyst	Prepared	Analyzed	Method	Qualifiers
Classical Chemistry Parameters										
Chloride	5.39	0.500	mg/L	1.0	2115019	DLW	09/15/2022 02:23	09/15/2022 18:34	SM 4110B 2011	
Sulfate as SO4	218	50.0	"	10.0	"	DLW		09/16/2022 16:22	"	DL-5
Fluoride	ND	0.22	"	1.0	2114052	ASC	09/14/2022 13:00	09/14/2022 16:27	SM 4500-F C 2011	
Total Dissolved Solids	515	1	"	"	2120033	DLW	09/16/2022 16:25	09/19/2022 16:00	SM 2540 C-2015	
Metals by EPA 200 Series Metho	ds ICP-AES									
Barium 455.403 [Radial]	0.081	0.010	mg/L	1.0	2116012	CLV	09/16/2022 09:45	09/19/2022 16:41	EPA 200.7 Rev 4.4	
Boron 249.773 [Radial]	0.101	0.050	"	"	"	CLV		"	"	
Calcium 315.887 [Radial]	64.5	0.100	"	2.0	"	CLV		09/23/2022 11:57	n .	
Lithium 610.362 [Axial]	0.064	0.040	"	1.0	"	CLV		09/19/2022 16:41	"	
Metals by EPA 200 Series Metho	ds ICP-MS [Analysis N	lode]							
Antimony [He]	ND	0.00200	mg/L	1.0	2116010	GWG		09/19/2022 15:06	EPA 200.8 Rev 5.4	
Arsenic [NG]	ND	0.00200	"	"	"	GWG			"	
Beryllium [He]	ND	0.00100	"	"	"	GWG			"	
Cadmium [He]	ND	0.00100	"	"	"	GWG	"		"	
Chromium [He]	ND	0.00100	"	"	"	GWG			"	
Cobalt [He]	0.00313	0.00100	"	"	"	GWG			"	
Lead [He]	ND	0.00100	"	"	"	GWG			"	
Molybdenum [He]	ND	0.00100	"	"	"	GWG			"	
Selenium [NG]	ND	0.00500	"	"	"	GWG	"		"	

Project: CGLP CCR Semi Annual

Project Number: [none]
Project Manager: Jim Ward

Reported: 10/05/2022 11:51

Classical Chemistry Parameters - Quality Control

Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Batch 2l14052 - Default Prep GenC	Chem										
Blank (2l14052-BLK1)											
Fluoride	9/14/22 16:27	ND	0.22	mg/L							
LCS (2I14052-BS1)											
Fluoride	9/14/22 16:27	2.01	0.22	mg/L	2.00		101	83.3-107			
LCS Dup (2l14052-BSD1)											
Fluoride	9/14/22 16:27	2.02	0.22	mg/L	2.00		101	83.3-107	0.496	30	
Duplicate (2l14052-DUP1)			Source: 22092	04-01							
Fluoride	9/14/22 16:27	0.31	0.22	mg/L		0.34			8.05	20	
Matrix Spike (2l14052-MS1)			Source: 22092	04-03							
Fluoride	9/14/22 16:27	0.65	0.22	mg/L	0.500	0.16	99.2	79.3-113			
Matrix Spike Dup (2l14052-MSD1)			Source: 22092	04-03							
Fluoride	9/14/22 16:27	0.65	0.22	mg/L	0.500	0.16	98.0	79.3-113	0.926	30	
Batch 2l15019 - Default Prep GenC	Chem										
Blank (2I15019-BLK1)											
Chloride	9/15/22 0:39	ND	0.500	mg/L							
Sulfate as SO4	9/15/22 0:39	ND	5.00								
Blank (2I15019-BLK2)											
Sulfate as SO4	9/16/22 14:03	ND	5.00	mg/L							
LCS (2I15019-BS1)											
Chloride	9/15/22 1:14	9.82	0.500	mg/L	10.0		98.2	87.4-108			
Sulfate as SO4	9/15/22 1:14	9.38	5.00		10.0		93.8	83.3-109			

Project: CGLP CCR Semi Annual

Project Number: [none]
Project Manager: Jim Ward

Reported: 10/05/2022 11:51

Classical Chemistry Parameters - Quality Control

Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Batch 2l15019 - Default Prep GenC	hem										
LCS (2I15019-BS2)											
Sulfate as SO4	9/16/22 14:38	9.53	5.00	mg/L	10.0		95.3	83.3-109			
LCS Dup (2l15019-BSD1)											
Chloride	9/15/22 0:04	11.9	0.500	mg/L	10.0		119	87.4-108	19.0	20	L1
Sulfate as SO4	9/15/22 0:04	10.1	5.00		10.0		101	83.3-109	7.81	20	
LCS Dup (2l15019-BSD2)											
Sulfate as SO4	9/16/22 15:12	9.62	5.00	mg/L	10.0		96.2	83.3-109	0.951	20	
Duplicate (2I15019-DUP1)			Source: 22092	04-07							
Chloride	9/15/22 12:11	18.0	0.500	mg/L		18.2			1.18	20	
Sulfate as SO4	9/15/22 12:11	10.5	5.00			9.96			5.40	20	
Matrix Spike (2l15019-MS1)			Source: 22092	204-07							
Chloride	9/15/22 12:45	37.8	1.00	mg/L	20.0	18.2	97.9	64.8-131			
Sulfate as SO4	9/15/22 12:45	31.0	10.0		20.0	9.96	105	53.2-148			
Matrix Spike Dup (2l15019-MSD1)			Source: 22092	204-07							
Chloride	9/15/22 13:20	38.2	1.00	mg/L	20.0	18.2	99.9	64.8-131	1.03	20	
Sulfate as SO4	9/15/22 13:20	31.7	10.0		20.0	9.96	109	53.2-148	2.55	20	
Batch 2l20033 - Default Prep GenC	them										
Blank (2l20033-BLK1)											
Total Dissolved Solids	9/19/22 16:00	ND	1	mg/L							
LCS (2120033-BS1)											
Total Dissolved Solids	9/19/22 16:00	121	1	mg/L	150		80.7	65-105			

Project: CGLP CCR Semi Annual

Project Number: [none]
Project Manager: Jim Ward

Reported: 10/05/2022 11:51

Classical Chemistry Parameters - Quality Control

Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Batch 2l20033 - Default Prep Gen	Chem										
LCS Dup (2I20033-BSD1)											
Total Dissolved Solids	9/19/22 16:00	127	1	mg/L	150		84.7	65-105	4.84	15	
Duplicate (2l20033-DUP1)			Source: 22092	04-07							
Total Dissolved Solids	9/19/22 16:00	74	1	mg/L		73			1.36	10	
Duplicate (2l20033-DUP2)			Source: 22092	04-11							
Total Dissolved Solids	9/19/22 16:00	182	1	mg/L		174			4.49	10	

Project: CGLP CCR Semi Annual

Project Number: [none]
Project Manager: Jim Ward

Reported: 10/05/2022 11:51

Metals by EPA 200 Series Methods ICP-AES - Quality Control

Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Batch 2l16012 - EPA 200.2 DCN 10	17 Rev 10										
Blank (2l16012-BLK1)											
Barium 455.403 [Radial]	9/19/22 15:35	ND	0.010	mg/L							
Boron 249.773 [Radial]	9/19/22 15:35	ND	0.050								
Calcium 315.887 [Radial]	9/19/22 15:35	ND	0.050								
Lithium 610.362 [Axial]	9/19/22 15:35	ND	0.040								
LCS (2I16012-BS1)											
Barium 455.403 [Radial]	9/19/22 15:39	0.219	0.010	mg/L	0.200		110	85-115			
Boron 249.773 [Radial]	9/19/22 15:39	0.230	0.050		0.200		115	85-115			
Calcium 315.887 [Radial]	9/19/22 15:39	0.198	0.050		0.200		98.9	85-115			
Lithium 610.362 [Axial]	9/19/22 15:39	0.198	0.040		0.200		98.9	85-115			
LCS Dup (2l16012-BSD1)											
Barium 455.403 [Radial]	9/19/22 15:43	0.221	0.010	mg/L	0.200		110	85-115	0.846	20	
Boron 249.773 [Radial]	9/19/22 15:43	0.230	0.050		0.200		115	85-115	0.0977	20	
Calcium 315.887 [Radial]	9/19/22 15:43	0.196	0.050		0.200		98.2	85-115	0.692	20	
Lithium 610.362 [Axial]	9/19/22 15:43	0.197	0.040		0.200		98.4	85-115	0.534	20	
Duplicate (2l16012-DUP1)			Source: 22092	04-01							
Calcium 315.887 [Radial]	9/19/22 15:50	33.6	0.050	mg/L		33.2			1.36	20	
Duplicate (2l16012-DUP2)			Source: 22092	04-11							
Calcium 315.887 [Radial]	9/19/22 16:33	25.1	0.050	mg/L		24.9			1.01	20	
Matrix Spike (2l16012-MS1)			Source: 22092	04-01							
Barium 455.403 [Radial]	9/19/22 15:50	0.293	0.010	mg/L	0.200	0.081	106	70-130			
Boron 249.773 [Radial]	9/19/22 15:50	0.248	0.050		0.200	0.035	107	70-130			
Calcium 315.887 [Radial]	9/19/22 15:50	33.6	0.050		0.200	33.2	228	70-130			
Lithium 610.362 [Axial]	9/19/22 15:50	0.245	0.040		0.200	0.063	91.1	70-130			

Project: CGLP CCR Semi Annual

Project Number: [none]
Project Manager: Jim Ward

Reported: 10/05/2022 11:51

Metals by EPA 200 Series Methods ICP-AES - Quality Control

Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Batch 2l16012 - EPA 200.2 DCN 1017 Rev 10											
Matrix Spike (2l16012-MS2)			Source: 22092	:04-11							
Barium 455.403 [Radial]	9/19/22 16:33	0.397	0.010	mg/L	0.200	0.190	103	70-130			
Boron 249.773 [Radial]	9/19/22 16:33	0.250	0.050		0.200	0.038	106	70-130			
Lithium 610.362 [Axial]	9/19/22 16:33	0.234	0.040		0.200	0.032	101	70-130			
Matrix Spike Dup (2l16012-MSD1)			Source: 22092	04-01							
Barium 455.403 [Radial]	9/19/22 15:54	0.291	0.010	mg/L	0.200	0.081	105	70-130	0.705	20	
Boron 249.773 [Radial]	9/19/22 15:54	0.244	0.050		0.200	0.035	105	70-130	1.71	20	
Calcium 315.887 [Radial]	9/19/22 15:54	33.6	0.050		0.200	33.2	208	70-130	0.117	20	
Lithium 610.362 [Axial]	9/19/22 15:54	0.245	0.040	"	0.200	0.063	91.0	70-130	0.104	20	
Matrix Spike Dup (2l16012-MSD2)			Source: 22092	204-11							
Barium 455.403 [Radial]	9/19/22 16:37	0.394	0.010	mg/L	0.200	0.190	102	70-130	0.882	20	
Boron 249.773 [Radial]	9/19/22 16:37	0.249	0.050		0.200	0.038	105	70-130	0.129	20	
Lithium 610.362 [Axial]	9/19/22 16:37	0.231	0.040		0.200	0.032	99.5	70-130	1.45	20	

Project: CGLP CCR Semi Annual

Project Number: [none] Reported:
Project Manager: Jim Ward 10/05/2022 11:51

Metals by EPA 200 Series Methods ICP-MS [Analysis Mode] - Quality Control

Arsenic [NG] 9/19/22 12:09 0.100 0.00200 " 0.100 100 85-115 0.156 2 0.100 100 9/19/22 12:09 0.104 0.00100 " 0.100 104 85-115 1.44 2 0.100 104 105 105 105 105 105 105 105 105 105 105	Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Artenire Ne 19 19 19 19 19 19 19 1	3atch 2l16010 - EPA 200.2 DCN	1017 Rev 10										
Areanic [NG] 91922 1157 ND 0.00200 ** Barylium [He] 91922 1157 ND 0.00100 ** Codmium [He] 91922 1157 ND 0.00100 ** Coball [He] 91922 1157 ND 0.00100 ** Selenium [NG] 91922 1157 ND 0.00100 ** Selenium [NG] 91922 1157 ND 0.00100 ** Coball [He] 91922 1203 0.103 0.00200 ** Coball [He] 91922 1203 0.103 0.00200 ** Coball [He] 91922 1203 0.103 0.00100 ** Coball [He] 91922 1203 0.103 0.00100 ** Coball [He] 91922 1203 0.103 0.00100 ** Coball [He] 91922 1203 0.104 0.00100 ** Coball [He] 91922 1203 0.104 0.00100 ** Coball [He] 91922 1203 0.104 0.00100 ** Coball [He] 91922 1203 0.102 0.00100 ** Coball [He] 91922 1203 0.103 0.00200 ** Coball [He] 91922 1203 0.103 0.00200 ** Coball [He] 91922 1209 0.103 0.00200 ** Coball [He] 91922 1209 0.104 0.00200 ** Coball [He] 91922 1209 0.104 0.00200 ** Coball [He] 91922 1209 0.104 0.00100 ** Coball [He] 91922 1209 0.103 0.00100 ** Coball [He] 91922 1209 0.104 0.00100	3lank (2l16010-BLK1)											
Beryllium Tel	Antimony [He]	9/19/22 11:57	ND	0.00200	mg/L							
Cadmium [He]	Arsenic [NG]	9/19/22 11:57	ND	0.00200								
Chromium He 9/19/22 11:57 ND 0.00100 1 1 1 1 1 1 1 1	Beryllium [He]	9/19/22 11:57	ND	0.00100								
Cobait [He]	Cadmium [He]	9/19/22 11:57	ND	0.00100								
Lead [He] 9/19/22 11:57 ND 0.00100 ** Molybdenum [He] 9/19/22 11:57 ND 0.00100 ** Selenium [NG] 9/19/22 11:57 ND 0.00500 ** LCS (2116010-8851) Cost (2116010-8851) Antimony [He] 9/19/22 12:03 0.103 0.00200 ** 0.100 103 85-115 Arsenic [NG] 9/19/22 12:03 0.103 0.00100 ** 0.100 103 85-115 Beryllium [He] 9/19/22 12:03 0.103 0.00100 ** 0.100 103 85-115 Cadmium [He] 9/19/22 12:03 0.103 0.00100 ** 0.100 103 85-115 Chromium [He] 9/19/22 12:03 0.104 0.00100 ** 0.100 104 85-115 Choolet [He] 9/19/22 12:03 0.102 0.00100 ** 0.100 104 85-115 Lead [He] 9/19/22 12:03 0.102 0.00100 ** 0.100	Chromium [He]	9/19/22 11:57	ND	0.00100								
Molyodenum [He]	Cobalt [He]	9/19/22 11:57	ND	0.00100								
Selenium NG 9/19/22 11:57	.ead [He]	9/19/22 11:57	ND	0.00100								
LCS (2116010-BS1) Antimony [He] 9/19/22 12:09 0.103 0.00200 mg/L 0.100 103 85-115 Clearly [He] 9/19/22 12:03 0.100 0.00200 0.000000	Molybdenum [He]	9/19/22 11:57	ND	0.00100								
Antimony [He] 9/19/22 12:03 0.103 0.00200 mg/L 0.100 103 85-115 Arsenic [NG] 9/19/22 12:03 0.103 0.00200 * 0.100 100 85-115 Beryllium [He] 9/19/22 12:03 0.103 0.00100 * 0.100 103 85-115 Cadmium [He] 9/19/22 12:03 0.103 0.00100 * 0.100 103 85-115 Chromium [He] 9/19/22 12:03 0.104 0.00100 * 0.100 104 85-115 Choral [He] 9/19/22 12:03 0.104 0.00100 * 0.100 104 85-115 Cobalt [He] 9/19/22 12:03 0.104 0.00100 * 0.100 104 85-115 Lead [He] 9/19/22 12:03 0.102 0.00100 * 0.100 102 85-115 Molybdenum [He] 9/19/22 12:03 0.102 0.00500 * 0.100 102 85-115 LCS Dup (2116010-BSD1) Antimony [He] 9/19/22 12:09 0.103 0.00200 mg/L 0.100 103 85-115 0.156 2 Beryllium [He] 9/19/22 12:09 0.104 0.00100 * 0.100 104 85-115 1.44 2 Cadmium [He] 9/19/22 12:09 0.103 0.00100 * 0.100 103 85-115 0.156 2 Cobalt [He] 9/19/22 12:09 0.103 0.00100 * 0.100 103 85-115 1.44 2 Cadmium [He] 9/19/22 12:09 0.103 0.00100 * 0.100 103 85-115 1.44 2 Cadmium [He] 9/19/22 12:09 0.103 0.00100 * 0.100 103 85-115 1.44 2 Cadmium [He] 9/19/22 12:09 0.103 0.00100 * 0.100 103 85-115 1.58 2 Cobalt [He] 9/19/22 12:09 0.103 0.00100 * 0.100 103 85-115 1.58 2 Cobalt [He] 9/19/22 12:09 0.103 0.00100 * 0.100 103 85-115 1.58 2 Cobalt [He] 9/19/22 12:09 0.103 0.00100 * 0.100 103 85-115 1.58 2 Cobalt [He] 9/19/22 12:09 0.103 0.00100 * 0.100 103 85-115 1.58 2 Cobalt [He] 9/19/22 12:09 0.103 0.00100 * 0.100 103 85-115 1.58 2 Cobalt [He] 9/19/22 12:09 0.103 0.00100 * 0.100 103 85-115 1.58 2 Cobalt [He] 9/19/22 12:09 0.103 0.00100 * 0.100 101 85-115 1.08 2 Molybdenum [He] 9/19/22 12:09 0.101 0.00100 * 0.100 101 85-115 1.08 2	Selenium [NG]	9/19/22 11:57	ND	0.00500								
Arsenic [NG] 9/19/22 12:03 0.100 0.00200 * 0.100 100 85-115 Beryllium [He] 9/19/22 12:03 0.103 0.00100 * 0.100 103 85-115 Cadmium [He] 9/19/22 12:03 0.103 0.00100 * 0.100 103 85-115 Chromium [He] 9/19/22 12:03 0.104 0.00100 * 0.100 104 85-115 Cbalt [He] 9/19/22 12:03 0.104 0.00100 * 0.100 104 85-115 Cbalt [He] 9/19/22 12:03 0.104 0.00100 * 0.100 104 85-115 Cbalt [He] 9/19/22 12:03 0.102 0.00100 * 0.100 104 85-115 Cbalt [He] 9/19/22 12:03 0.00100 * 0.100 102 85-115 Cbalt [He] 9/19/22 12:03 0.0099 0.00100 * 0.100 102 85-115 Cbalt [He] 9/19/22 12:03 0.102 0.00500 * 0.100 102 85-115 Cbalt [He] 9/19/22 12:03 0.102 0.00500 * 0.100 102 85-115 Cbalt [He] 9/19/22 12:09 0.103 0.00200 mg/L 0.100 103 85-115 0.126 : Arsenic [NG] 9/19/22 12:09 0.104 0.00100 * 0.100 100 104 85-115 0.156 : Beryllium [He] 9/19/22 12:09 0.103 0.00100 * 0.100 103 85-115 0.156 : Beryllium [He] 9/19/22 12:09 0.103 0.00100 * 0.100 103 85-115 0.117 : Chromium [He] 9/19/22 12:09 0.103 0.00100 * 0.100 103 85-115 0.117 : Chromium [He] 9/19/22 12:09 0.103 0.00100 * 0.100 103 85-115 0.117 : Chromium [He] 9/19/22 12:09 0.103 0.00100 * 0.100 103 85-115 0.137 : Chromium [He] 9/19/22 12:09 0.103 0.00100 * 0.100 103 85-115 1.58 : Chromium [He] 9/19/22 12:09 0.103 0.00100 * 0.100 103 85-115 1.58 : Chromium [He] 9/19/22 12:09 0.103 0.00100 * 0.100 103 85-115 1.58 : Chromium [He] 9/19/22 12:09 0.103 0.00100 * 0.100 103 85-115 1.58 : Chromium [He] 9/19/22 12:09 0.103 0.00100 * 0.100 103 85-115 1.58 : Chromium [He] 9/19/22 12:09 0.103 0.00100 * 0.100 103 85-115 1.37 : Chromium [He] 9/19/22 12:09 0.103 0.00100 * 0.100 103 85-115 1.37 : Chromium [He] 9/19/22 12:09 0.103 0.00100 * 0.100 103 85-115 1.37 : Chromium [He] 9/19/22 12:09 0.103 0.00100 * 0.100 103 85-115 1.37 : Chromium [He] 9/19/22 12:09 0.103 0.00100 * 0.100 103 85-115 1.38 : Chromium [He] 9/19/22 12:09 0.103 0.00100 * 0.100 103 85-115 1.38 : Chromium [He] 9/19/22 12:09 0.103 0.00100 * 0.100 103 85-115 1.38 : Chromium [He] 9/19/22 12:09 0.103 0.00100 * 0.100 0.100 103 85-115 1.38 : Chromium [He] 9/19/22 12	.CS (2l16010-BS1)											
Beryllium [He] 9/19/22 12:03 0.103 0.00100 * 0.100 103 85-115 Cadmium [He] 9/19/22 12:03 0.103 0.00100 * 0.100 103 85-115 Chromium [He] 9/19/22 12:03 0.104 0.00100 * 0.100 104 85-115 Chobalt [He] 9/19/22 12:03 0.104 0.00100 * 0.100 104 85-115 Lead [He] 9/19/22 12:03 0.102 0.00100 * 0.100 104 85-115 Lead [He] 9/19/22 12:03 0.099 0.00100 * 0.100 102 85-115 Selenium [NG] 9/19/22 12:03 0.102 0.00500 * 0.100 102 85-115 LCS Dup (2116010-BSD1) Antimony [He] 9/19/22 12:09 0.103 0.00200 mg/L 0.100 103 85-115 0.126 : 88-115 Beryllium [He] 9/19/22 12:09 0.104 0.00100 * 0.100 104 85-115 1.44 : Cadmium [He] 9/19/22 12:09 0.103 0.00100 * 0.100 103 85-115 1.44 : Cadmium [He] 9/19/22 12:09 0.103 0.00100 * 0.100 103 85-115 1.44 : Cadmium [He] 9/19/22 12:09 0.103 0.00100 * 0.100 103 85-115 1.58 : Chromium [He] 9/19/22 12:09 0.103 0.00100 * 0.100 103 85-115 1.58 : Chromium [He] 9/19/22 12:09 0.103 0.00100 * 0.100 103 85-115 1.58 : Chromium [He] 9/19/22 12:09 0.103 0.00100 * 0.100 103 85-115 1.58 : Chromium [He] 9/19/22 12:09 0.103 0.00100 * 0.100 103 85-115 1.58 : Chromium [He] 9/19/22 12:09 0.103 0.00100 * 0.100 103 85-115 1.58 : Chromium [He] 9/19/22 12:09 0.103 0.00100 * 0.100 103 85-115 1.58 : Chromium [He] 9/19/22 12:09 0.103 0.00100 * 0.100 103 85-115 1.58 : Chromium [He] 9/19/22 12:09 0.103 0.00100 * 0.100 103 85-115 1.58 : Chromium [He] 9/19/22 12:09 0.103 0.00100 * 0.100 103 85-115 1.58 : Chromium [He] 9/19/22 12:09 0.103 0.00100 * 0.100 103 85-115 1.58 : Chromium [He] 9/19/22 12:09 0.103 0.00100 * 0.100 103 85-115 1.58 : Chromium [He] 9/19/22 12:09 0.103 0.00100 * 0.100 103 85-115 1.08 : Chromium [He] 9/19/22 12:09 0.103 0.00100 * 0.100 103 85-115 1.08 : Chromium [He] 9/19/22 12:09 0.103 0.00100 * 0.100 103 85-115 1.08 : Chromium [He] 9/19/22 12:09 0.103 0.00100 * 0.100 103 85-115 1.08 : Chromium [He] 9/19/22 12:09 0.103 0.00100 * 0.100 100 99.5 85-115 0.0820 : Chromium [He] 9/19/22 12:09 0.100 0.100 0.00100 * 0.100 100 99.5 85-115 0.0820 : Chromium [He] 9/19/22 12:09 0.100 0.100 0.00100 * 0.100 0.100 99.5 85-1	Antimony [He]	9/19/22 12:03	0.103	0.00200	mg/L	0.100		103	85-115			
Cadmium [He] 9/19/22 12:03 0.103 0.00100 " 0.100 103 85-115 Chromium [He] 9/19/22 12:03 0.104 0.00100 " 0.100 104 85-115 Cobalt [He] 9/19/22 12:03 0.104 0.00100 " 0.100 104 85-115 Lead [He] 9/19/22 12:03 0.102 0.00100 " 0.100 102 85-115 Molybdenum [He] 9/19/22 12:03 0.099 0.00100 " 0.100 99.4 85-115 LCS Dup (2116010-BSD1) LCS Dup (211	Arsenic [NG]	9/19/22 12:03	0.100	0.00200		0.100		100	85-115			
Chromium [He] 9/19/22 12:03 0.104 0.00100 " 0.100 104 85-115 Cobalt [He] 9/19/22 12:03 0.104 0.00100 " 0.100 104 85-115 Lead [He] 9/19/22 12:03 0.102 0.00100 " 0.100 102 85-115 Molybdenum [He] 9/19/22 12:03 0.099 0.00100 " 0.100 99.4 85-115 Selenium [NG] 9/19/22 12:03 0.102 0.00500 " 0.100 102 85-115 LCS Dup (216010-BSD1) Antimony [He] 9/19/22 12:09 0.103 0.00200 mg/L 0.100 103 85-115 0.126 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Beryllium [He]	9/19/22 12:03	0.103	0.00100		0.100		103	85-115			
Cobalt [He] 9/19/22 12:03 0.104 0.00100 " 0.100 104 85-115 Lead [He] 9/19/22 12:03 0.009 0.00100 " 0.100 102 85-115 Molybdenum [He] 9/19/22 12:03 0.099 0.00100 " 0.100 99.4 85-115 Selenium [NG] 9/19/22 12:03 0.102 0.00500 " 0.100 102 85-115 Selenium [NG] 9/19/22 12:03 0.102 0.00500 " 0.100 102 85-115 Selenium [NG] 9/19/22 12:09 0.103 0.00200 mg/L 0.100 103 85-115 0.126 2 Arsenic [NG] 9/19/22 12:09 0.100 0.00200 " 0.100 100 85-115 0.156 2 Selenium [He] 9/19/22 12:09 0.104 0.00100 " 0.100 104 85-115 1.44 2 Selenium [He] 9/19/22 12:09 0.103 0.00100 " 0.100 103 85-115 0.117 2 Selenium [He] 9/19/22 12:09 0.103 0.00100 " 0.100 103 85-115 0.117 2 Selenium [He] 9/19/22 12:09 0.103 0.00100 " 0.100 103 85-115 1.58 2 Selenium [He] 9/19/22 12:09 0.103 0.00100 " 0.100 103 85-115 1.58 2 Selenium [He] 9/19/22 12:09 0.103 0.00100 " 0.100 103 85-115 1.58 2 Selenium [He] 9/19/22 12:09 0.103 0.00100 " 0.100 103 85-115 1.58 2 Selenium [He] 9/19/22 12:09 0.103 0.00100 " 0.100 103 85-115 1.58 2 Selenium [He] 9/19/22 12:09 0.103 0.00100 " 0.100 103 85-115 1.58 2 Selenium [He] 9/19/22 12:09 0.101 0.00100 " 0.100 101 85-115 1.08 2 Selenium [He] 9/19/22 12:09 0.101 0.00100 " 0.100 101 85-115 1.08 2 Selenium [He] 9/19/22 12:09 0.101 0.00100 " 0.100 101 85-115 1.08 2 Selenium [He] 9/19/22 12:09 0.101 0.00100 " 0.100 101 85-115 1.08 2 Selenium [He] 9/19/22 12:09 0.101 0.00100 " 0.100 101 85-115 1.08 2 Selenium [He] 9/19/22 12:09 0.101 0.00100 " 0.100 101 85-115 1.08 2 Selenium [He] 9/19/22 12:09 0.101 0.00100 " 0.100 101 85-115 1.08 2 Selenium [He] 9/19/22 12:09 0.101 0.00100 " 0.100 101 85-115 1.08 2 Selenium [He] 9/19/22 12:09 0.101 0.00100 " 0.100 101 85-115 1.08 2 Selenium [He] 9/19/22 12:09 0.101 0.00100 " 0.100 101 85-115 1.08 2 Selenium [He] 9/19/22 12:09 0.101 0.00100 " 0.100 1.00100 99.5 85-115 0.0820 2 Selenium [He] 9/19/22 12:09 0.100 0.100 0.00100 " 0.100 0.100 99.5 85-115 0.0820 2 Selenium [He] 9/19/22 12:09 0.100 0.100 0.00100 " 0.100 0.100 99.5 85-115 0.0820 2 Selenium [He] 9/19/22 12:09 0.100 0.100 0.00100 " 0.100 0.100 0.1	Cadmium [He]	9/19/22 12:03	0.103	0.00100		0.100		103	85-115			
Lead [He] 9/19/22 12:03 0.102 0.00100 " 0.100 102 85-115 Molybdenum [He] 9/19/22 12:03 0.099 0.00100 " 0.100 99.4 85-115 Selenium [NG] 9/19/22 12:03 0.102 0.00500 " 0.100 102 85-115 LCS Dup (216010-BSD1) Antimony [He] 9/19/22 12:09 0.103 0.00200 mg/L 0.100 103 85-115 0.126 2 Arsenic [NG] 9/19/22 12:09 0.100 0.00200 " 0.100 100 85-115 0.156 2 Beryllium [He] 9/19/22 12:09 0.104 0.00100 " 0.100 104 85-115 0.117 2 Cadmium [He] 9/19/22 12:09 0.103 0.00100 " 0.100 103 85-115 0.117 2 Cobalt [He] 9/19/22 12:09 0.103 0.00100 " 0.100 103 85-115 1.08 2 Molybdenum [He] 9/19/22 12:09 0.101 0.00100 " 0.100	Chromium [He]	9/19/22 12:03	0.104	0.00100		0.100		104	85-115			
Molybdenum [He] 9/19/22 12:03 0.099 0.00100 " 0.100 99.4 85-115 Selenium [NG] 9/19/22 12:03 0.102 0.00500 " 0.100 102 85-115 LCS Dup (2116010-BSD1) Antimony [He] 9/19/22 12:09 0.103 0.00200 mg/L 0.100 103 85-115 0.126 2 Arsenic [NG] 9/19/22 12:09 0.100 0.00200 " 0.100 100 85-115 0.156 2 Beryllium [He] 9/19/22 12:09 0.104 0.00100 " 0.100 104 85-115 1.44 2 Cadmium [He] 9/19/22 12:09 0.103 0.00100 " 0.100 103 85-115 0.117 2 Chromium [He] 9/19/22 12:09 0.103 0.00100 " 0.100 103 85-115 1.58 2 Cobalt [He] 9/19/22 12:09 0.103 0.00100 " 0.100 103 85-115 1.58 2 Cobalt [He] 9/19/22 12:09 0.103 0.00100 " 0.100 103 85-115 1.37 2 Molybdenum [He] 9/19/22 12:09 0.101 0.00100 " 0.100 101 85-115 1.08 2 Molybdenum [He] 9/19/22 12:09 0.101 0.00100 " 0.100 101 85-115 1.08 2	Cobalt [He]	9/19/22 12:03	0.104	0.00100	•	0.100		104	85-115			
Selenium [NG] 9/19/22 12:03 0.102 0.00500 " 0.100 102 85-115 LCS Dup (2l16010-BSD1) Antimony [He] 9/19/22 12:09 0.103 0.00200 mg/L 0.100 103 85-115 0.126 2 Arsenic [NG] 9/19/22 12:09 0.100 0.00200 " 0.100 100 85-115 0.156 2 Beryllium [He] 9/19/22 12:09 0.104 0.00100 " 0.100 104 85-115 1.44 2 Cadmium [He] 9/19/22 12:09 0.103 0.00100 " 0.100 103 85-115 0.117 2 Chromium [He] 9/19/22 12:09 0.103 0.00100 " 0.100 103 85-115 1.58 2 Cobalt [He] 9/19/22 12:09 0.101 0.00100 " 0.100 101 85-115 1.08 2 Molybdenum [He] 9/19/22 12:09 0.101 0.00100 " 0.100 99.5 85-115 0.0820 2	.ead [He]	9/19/22 12:03	0.102	0.00100		0.100		102	85-115			
LCS Dup (2l16010-BSD1) Antimony [He] 9/19/22 12:09 0.103 0.00200 mg/L 0.100 103 85-115 0.126 2 Arsenic [NG] 9/19/22 12:09 0.100 0.00200 " 0.100 100 85-115 0.156 2 Beryllium [He] 9/19/22 12:09 0.104 0.00100 " 0.100 104 85-115 1.44 2 Cadmium [He] 9/19/22 12:09 0.103 0.00100 " 0.100 103 85-115 0.117 2 Chromium [He] 9/19/22 12:09 0.103 0.00100 " 0.100 103 85-115 1.58 2 Cobalt [He] 9/19/22 12:09 0.103 0.00100 " 0.100 103 85-115 1.37 2 Lead [He] 9/19/22 12:09 0.101 0.00100 " 0.100 101 85-115 1.08 2 Molybdenum [He] 9/19/22 12:09 0.101 0.00100 " 0.100 99.5 85-115 0.0820 2	Volybdenum [He]	9/19/22 12:03	0.099	0.00100		0.100		99.4	85-115			
Antimony [He] 9/19/22 12:09 0.103 0.00200 mg/L 0.100 103 85-115 0.126 2 Arsenic [NG] 9/19/22 12:09 0.100 0.00200 " 0.100 100 85-115 0.156 2 Beryllium [He] 9/19/22 12:09 0.104 0.00100 " 0.100 104 85-115 1.44 2 Cadmium [He] 9/19/22 12:09 0.103 0.00100 " 0.100 103 85-115 0.117 2 Chromium [He] 9/19/22 12:09 0.103 0.00100 " 0.100 103 85-115 1.58 2 Cobalt [He] 9/19/22 12:09 0.103 0.00100 " 0.100 103 85-115 1.37 2 Lead [He] 9/19/22 12:09 0.101 0.00100 " 0.100 101 85-115 1.08 2 Molybdenum [He] 9/19/22 12:09 0.101 0.00100 " 0.100 101 85-115 1.08 2	Selenium [NG]	9/19/22 12:03	0.102	0.00500		0.100		102	85-115			
Arsenic [NG] 9/19/22 12:09 0.100 0.00200 " 0.100 100 85-115 0.156 2 2 8 8 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1	.CS Dup (2l16010-BSD1)											
Beryllium [He] 9/19/22 12:09 0.104 0.00100 " 0.100 104 85-115 1.44 2 Cadmium [He] 9/19/22 12:09 0.103 0.00100 " 0.100 103 85-115 0.117 2 Chromium [He] 9/19/22 12:09 0.103 0.00100 " 0.100 103 85-115 1.58 2 Cobalt [He] 9/19/22 12:09 0.103 0.00100 " 0.100 103 85-115 1.37 2 Lead [He] 9/19/22 12:09 0.101 0.00100 " 0.100 101 85-115 1.08 2 Molybdenum [He] 9/19/22 12:09 0.100 0.00100 " 0.100 99.5 85-115 0.0820 2	Antimony [He]	9/19/22 12:09	0.103	0.00200	mg/L	0.100		103	85-115	0.126	20	
Cadmium [He] 9/19/22 12:09 0.103 0.00100 " 0.100 103 85-115 0.117 2 Chromium [He] 9/19/22 12:09 0.103 0.00100 " 0.100 103 85-115 1.58 2 Cobalt [He] 9/19/22 12:09 0.103 0.00100 " 0.100 103 85-115 1.37 2 Lead [He] 9/19/22 12:09 0.101 0.00100 " 0.100 101 85-115 1.08 2 Molybdenum [He] 9/19/22 12:09 0.100 0.00100 " 0.100 99.5 85-115 0.0820 2	Arsenic [NG]	9/19/22 12:09	0.100	0.00200	•	0.100		100	85-115	0.156	20	
Chromium [He] 9/19/22 12:09 0.103 0.00100 " 0.100 103 85-115 1.58 2 Cobalt [He] 9/19/22 12:09 0.103 0.00100 " 0.100 103 85-115 1.37 2 Lead [He] 9/19/22 12:09 0.101 0.00100 " 0.100 101 85-115 1.08 2 Molybdenum [He] 9/19/22 12:09 0.100 0.00100 " 0.100 99.5 85-115 0.0820 2	Beryllium [He]	9/19/22 12:09	0.104	0.00100		0.100		104	85-115	1.44	20	
Cobalt [He] 9/19/22 12:09 0.103 0.00100 " 0.100 103 85-115 1.37 2 Lead [He] 9/19/22 12:09 0.101 0.00100 " 0.100 101 85-115 1.08 2 Molybdenum [He] 9/19/22 12:09 0.100 0.00100 " 0.100 99.5 85-115 0.0820 2	Cadmium [He]	9/19/22 12:09	0.103	0.00100		0.100		103	85-115	0.117	20	
Lead [He] 9/19/22 12:09 0.101 0.00100 " 0.100 101 85-115 1.08 2 Molybdenum [He] 9/19/22 12:09 0.100 0.00100 " 0.100 99.5 85-115 0.0820 2	Chromium [He]	9/19/22 12:09	0.103	0.00100		0.100		103	85-115	1.58	20	
Molybdenum [He] 9/19/22 12:09 0.100 0.00100 " 0.100 99.5 85-115 0.0820 2	Cobalt [He]	9/19/22 12:09	0.103	0.00100		0.100		103	85-115	1.37	20	
	.ead [He]	9/19/22 12:09	0.101	0.00100	•	0.100		101	85-115	1.08	20	
Selenium [NG] 9/19/22 12:09 0.101 0.00500 " 0.100 101 85.115 0.014 (vlolybdenum [He]	9/19/22 12:09	0.100	0.00100		0.100		99.5	85-115	0.0820	20	
5.701 0.0000 0.100 101 00°110 0.814 2	Selenium [NG]	9/19/22 12:09	0.101	0.00500		0.100		101	85-115	0.914	20	

Reported:

10/05/2022 11:51

Choctaw Generation LP 2391 Pensacola Rd. Ackerman MS, 39735 Project: CGLP CCR Semi Annual

Project Number: [none]
Project Manager: Jim Ward

Metals by EPA 200 Series Methods ICP-MS [Analysis Mode] - Quality Control

Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Batch 2l16010 - EPA 200.2 DCN 101	7 Rev 10										
Matrix Spike (2l16010-MS1)			Source: 22092	04-01							
Antimony [He]	9/19/22 13:16	0.107	0.00200	mg/L	0.100	ND	107	70-130			
Arsenic [NG]	9/19/22 13:16	0.098	0.00200		0.100	ND	97.8	70-130			
Beryllium [He]	9/19/22 13:16	0.101	0.00100		0.100	0.004	97.8	70-130			
Cadmium [He]	9/19/22 13:16	0.101	0.00100		0.100	0.0005	101	70-130			
Chromium [He]	9/19/22 13:16	0.099	0.00100		0.100	0.0002	98.7	70-130			
Cobalt [He]	9/19/22 13:16	0.113	0.00100		0.100	0.014	98.9	70-130			
Lead [He]	9/19/22 13:16	0.103	0.00100		0.100	0.0008	102	70-130			
Molybdenum [He]	9/19/22 13:16	0.109	0.00100		0.100	ND	109	70-130			
Selenium [NG]	9/19/22 13:16	0.097	0.00500		0.100	ND	97.5	70-130			
Matrix Spike (2l16010-MS2)			Source: 22092	04-09							
Antimony [He]	9/19/22 14:41	0.106	0.00200	mg/L	0.100	ND	106	70-130			
Arsenic [NG]	9/19/22 14:41	0.096	0.00200		0.100	ND	95.9	70-130			
Beryllium [He]	9/19/22 14:41	0.104	0.00100		0.100	ND	104	70-130			
Cadmium [He]	9/19/22 14:41	0.104	0.00100		0.100	ND	104	70-130			
Chromium [He]	9/19/22 14:41	0.104	0.00100		0.100	ND	104	70-130			
Cobalt [He]	9/19/22 14:41	0.115	0.00100		0.100	0.010	105	70-130			
Lead [He]	9/19/22 14:41	0.102	0.00100		0.100	ND	102	70-130			
Molybdenum [He]	9/19/22 14:41	0.103	0.00100		0.100	ND	103	70-130			
Selenium [NG]	9/19/22 14:41	0.097	0.00500		0.100	ND	97.4	70-130			
Matrix Spike Dup (2l16010-MSD1)			Source: 22092	04-01							
Antimony [He]	9/19/22 13:22	0.106	0.00200	mg/L	0.100	ND	106	70-130	0.749	20	
Arsenic [NG]	9/19/22 13:22	0.098	0.00200		0.100	ND	97.6	70-130	0.179	20	
Beryllium [He]	9/19/22 13:22	0.102	0.00100		0.100	0.004	97.9	70-130	0.110	20	
Cadmium [He]	9/19/22 13:22	0.100	0.00100		0.100	0.0005	99.8	70-130	0.878	20	
Chromium [He]	9/19/22 13:22	0.099	0.00100		0.100	0.0002	99.1	70-130	0.424	20	
Cobalt [He]	9/19/22 13:22	0.113	0.00100		0.100	0.014	99.6	70-130	0.599	20	
Lead [He]	9/19/22 13:22	0.102	0.00100		0.100	0.0008	102	70-130	0.670	20	
Molybdenum [He]	9/19/22 13:22	0.107	0.00100		0.100	ND	107	70-130	1.19	20	
Selenium [NG]	9/19/22 13:22	0.097	0.00500		0.100	ND	97.2	70-130	0.229	20	

Project: CGLP CCR Semi Annual

Project Number: [none] Reported:
Project Manager: Jim Ward 10/05/2022 11:51

Metals by EPA 200 Series Methods ICP-MS [Analysis Mode] - Quality Control

Analyte	Analyzed	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifiers
Batch 2l16010 - EPA 200.2 DCN 10	17 Rev 10										
Matrix Spike Dup (2l16010-MSD2)			Source: 22092	04-09							
Antimony [He]	9/19/22 14:47	0.106	0.00200	mg/L	0.100	ND	106	70-130	0.199	20	
Arsenic [NG]	9/19/22 14:47	0.096	0.00200		0.100	ND	95.7	70-130	0.177	20	
Beryllium [He]	9/19/22 14:47	0.101	0.00100		0.100	ND	101	70-130	3.04	20	
Cadmium [He]	9/19/22 14:47	0.104	0.00100		0.100	ND	104	70-130	0.192	20	
Chromium [He]	9/19/22 14:47	0.102	0.00100		0.100	ND	102	70-130	1.76	20	
Cobalt [He]	9/19/22 14:47	0.111	0.00100		0.100	0.010	101	70-130	3.37	20	
Lead [He]	9/19/22 14:47	0.101	0.00100		0.100	ND	101	70-130	0.990	20	
Molybdenum [He]	9/19/22 14:47	0.102	0.00100		0.100	ND	102	70-130	0.263	20	
Selenium [NG]	9/19/22 14:47	0.098	0.00500		0.100	ND	98.0	70-130	0.644	20	

Certification Code

Choctaw Generation LP 2391 Pensacola Rd. Project: CGLP CCR Semi Annual

Project Number: [none] Reported:
Project Manager: Jim Ward 10/05/2022 11:51

Certified Analyses Included in this Report

Ackerman MS, 39735

Analyte

Analyte	Certification Code
EPA 200.7 Rev 4.4 in Water	
Aluminum 394.401 [Radial]	C01,C02
Aluminum 396.152 [Radial]	C01,C02
Antimony 206.833 [Axial]	C01,C02
Arsenic 193.759 [Axial]	C01,C02
Barium 455.403 [Radial]	C01,C02
Barium 493.409 [Radial]	C01,C02
Beryllium 313.042 [Axial]	C01,C02
Boron 249.773 [Radial]	C01,C02
Cadmium 228.802 [Axial]	C01,C02
Calcium 315.887 [Radial]	C01,C02
Chromium 283.563 [Axial]	C01,C02
Cobalt 228.616 [Axial]	C01,C02
Copper 324.754 [Axial]	C01,C02
Iron 259.940 [Axial]	C01,C02
Iron 259.940 [Radial]	C01,C02
Lead 220.353 [Axial]	C01,C02
Lithium 610.362 [Axial]	C01,C02
Magnesium 285.213 [Radial]	C01,C02
Manganese 257.610 [Axial]	C01,C02
Molybdenum 202.030 [Axial]	C01,C02
Nickel 231.604 [Axial]	C01,C02
Potassium 766.490 [Radial]	C01,C02
Phosphorus 178.284 [Axial]	C01,C02
Phosphorus 178.284 [Radial]	C01,C02
Selenium 196.090 [Axial]	C01,C02
Silver 328.068 [Axial]	C01,C02
Sodium 589.592 [Axial]	C01,C02
Sodium 589.592 [Radial]	C01,C02
Strontium 346.446 [Radial]	C01,C02
Strontium 421.552 [Radial]	C01,C02
Thallium 190.856 [Axial]	C01,C02
Vanadium 309.311 [Axial]	C01,C02
Zinc 213.856 [Axial]	C01,C02
EPA 200.8 Rev 5.4 in Water	
Aluminum [He]	C01,C02
Antimony [He]	C01,C02
Antimony [HHe]	C01,C02
Antimony [NG]	C01,C02
Arsenic [He]	C01,C02
Arsenic [HHe]	C01,C02
Arsenic [NG]	C01,C02

Choctaw Generation LP	Project: CGLP CCR Semi Annual	
2391 Pensacola Rd.	Project Number: [none]	Reported:
Ackerman MS, 39735	Project Manager: Jim Ward	10/05/2022 11:51

Barium [He]	C01,C02
Beryllium [He]	C01,C02
Boron [NG]	C01,C02
Cadmium [He]	C01,C02
Cadmium [HHe]	C01,C02
Cadmium [NG]	C01,C02
Chromium [He]	C01,C02
Cobalt [He]	C01,C02
Copper [He]	C01,C02
Copper [NG]	C01,C02
Iron [He]	C01,C02
Lead [He]	C01,C02
Lead [NG]	C01,C02
Manganese [He]	C01,C02
Molybdenum [He]	C01,C02
Nickel [He]	C01,C02
Selenium [He]	C01,C02
Selenium [HHe]	C01,C02
Selenium [NG]	C01,C02
Silver [He]	C01,C02
Silver [NG]	C01,C02
Strontium [He]	C01,C02
Thallium [He]	C01,C02
Vanadium [He]	C01,C02
Zinc [He]	C01,C02

^{**}Only compounds included in this list are associated with accredited analyses**

Project: CGLP CCR Semi Annual

Project Number: [none]
Project Manager: Jim Ward

Reported: 10/05/2022 11:51

Laboratory Accreditations/Certifications

Code	Description	Number	Expires
C01	LA Environmental Lab Accreditation Program	01960	06/30/2022
C02	The NELAC Institute (NELAP)	TNI01397	06/30/2022
C03	Ms Dept of Health (Drinking Water Microbiology)	MS00021	12/31/2022
C04	Ms Dept of Health (Drinking Water Chemistry)	MS00021	12/31/2022
C05	Ms DEQ Lead Firm Certification	PBF-00000028	03/24/2023
C06	MsDEQ Asbestos Inspector : C.D. Bingham	ABI-00001348	02/12/2023
C07	MsDEQ Air Monitor : C.D. Bingham	AM-011572	02/13/2023
C08	MsDEQ Asbestos Inspector: C. W. Meins	ABI-00001821	09/09/2022
C09	MsDEQ Air Monitor: C.W. Meins	AM-011189	02/13/2023
C14	MsDEQ Lead Paint Inspector : C.D. Bingham	PBI-00003690	01/29/2023
C15	MsDEQ Lead Paint Inspector : C.W. Meins	PBI-00001740	01/29/2023

Report Definitions

TNC DET ND NR	Too Numerous To Count Analyte DETECTED Analyte NOT DETECTED at or above the minimum reporting limit Not Reported
RPD	Relative Percent Difference
ICV	Initial Calibration Verflication
CCV	Continuing Calibration Verification Standard
SSV	Secondary Source Verfication Standard
LCS	Lab Control Spike - Lab matrix prepared with known concentration of analyte/s of interest analyzed by method.
MS	Matrix Spike - Sample prepared with known concentration of analyte/s of interest analyzed by method.
MSD	Matrix Spike Duplicate - Duplicate sample prepared with known concentration of analyte/s of interest analyzed by method.
MRL	Minimum Reporting Limit
%REC	Percentage Recovery of known concentration added to matrix
Batch	Group of samples prepared for analysis not to exceed 20 samples.
Matrix	Material containing analyte/s of interest
Surrogate	Analyte added to sample to determine extraction efficiency of method.

Choctaw Generation LP Project: CGLP CCR Semi Annual

 2391 Pensacola Rd.
 Project Number: [none]
 Reported:

 Ackerman MS, 39735
 Project Manager: Jim Ward
 10/05/2022 11:51

Analyst Initials Key

<u>Initials</u>
ASC
CLV
DLW
GWG
SET
TKM
TPT

Print Form

PO Box 1410, Ocean Springs, MS 39566-1410 (228) 875-6420 FAX (228) 875-6423

Chain of Custody Record

Lab ID# MS00021 LELAP ID # 01960 TNI ID # TNI01397

2209201

www.micromethodslab.com											
Company Name: Choctaw Generation Limited Partnership	Partnership LLLP	LLLP Project Manager:	ınager:		Jim	Ward	ਰ		Turn A	Turn Around Time & Reporting	Reporting
Address: 2391 Pensacola F		Purchase Order #:	Order #:						Normal	ral *All rush order Ph	Phone
State: MS	^{Zip:} 39735	Email Address	ress :	shetzen	1	Virac	envirocomp n	100	Next Day*	requests must be	Maii Fax
Phone: 662-387-5758		Sampler Name	lame Printed	5	3		R	MITTER	Other*	7 C C C C C C C C C C C C C C C C C C C	Email
Fax:		Samplet	lamed Sidned	1	H	8	h		QC Level: Level 1	Level 2	_evel 3
こうかん はんかい かんだい かんこうしょ	The state of the s	100	0	ist Ana	List Analyses Requested	queste	d	Takke Jak	Field T	Field Testing	THE PROPERTY OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAM
Project Name: CGLP CCR	CR	servat		fate	on,	ım,	m,	m B	iD#	TField Test Field Test	Matrix: w = Water
Semi-Annua	nual	ontaine G) or osite (0	ΓDS	de, Sul imony, rsenic	m, Bord ryllium dmium, romium	Calciu obalt hium	oendu Ienium	Radiu 8 & 22			DW = Drinking Water
Sample Identification Da	Sampling Matrix Date/Time Code	Grab	-	Fluori Ant A	Be Ca	Lead,	Moly Se	Total 226			SO = Soil SE = Sediment
8-72 NW-9	-22, 14:00 W		X	X	×	X	X	X			L = Liquid
OW-2 9-12	2-22 16:58 W	4 G	X	X	X	X	X	X			O = OH
3 //:50 9-	12-22, W	4 G	X	X	X	X	X	X			SL = Sludge
MW-7 9-13-27	-22, 11:48 W	4 0	X	X	X	X	X	X			In-
MW-14 7-13-23	-22, 10:56 W	4 G	X	X	X	X	X	×			Drocor
Field Blank 7-3-22	22 10:51 W	4 0	X	X	X	X	X	X			1= H2SOA
Duplicate 9-13-1	22 W	4 G	X	X	X	X	X	×			2= H3PO4
MW-12 9+2	-22, 16:30 W	4 0	×	X	X	X	X	×			3=NaOH
CCR-2 942	-22, 15:37 W	4 G	×	X	X	X	X	×			4=2nC4H10O6 &
CCR-3 9-12	-22, 14.45 W	4 G	X	X	X	X	X	×			NaOH
CCR-4 9-12	-22,13:00 W	4 G	X	X	×	X	X	×			6=HNO3
Received on Ice? (Y) N Thermometer#	Sooler #		Receipt	Temp (Receipt Temp Corrected(°C	J.					8=HCl
Date & Time By:	18		Sample_	Bla	Blank	Cooler_			**All Temps are Corrected Values**	rected Values**	9=NaHSO4
Printed Name	STATE OF THE SECOND	Signature	18		Company		Date	Time	Notes:		
Relinquished by	RLING FR	of			523	9	13/22	16:00	Please no	notify us once all	ince all
Received by FMEX —		1				-			coolers a	coolers are recional (sex	/wd (3 Exct)
Relinquished by Relinquished by	1	-							Please Ship	io ecs 4-day	4-day
Received by SMANN Thy	neh sm	ann	OM	7	MM	9	18/12/	1043	coolers		22
Relinquished by	Q	C) V				-		immodiatele		
Received by										1)

Page 1 of 1/2 (ST) Issued 8/15/2022 SCH

Chain of Custody Record Lab ID# MS00021

M-M Lab

PO Box 1410, Ocean Springs, MS 39566-1410 (228) 875-6420 FAX (228) 875-6423 www.micromethodslab.com

TNI ID # TNI01397 **LELAP ID # 01960**

City: Ackerman Address: 2391 Pensacola Relinquished by Received by Received by Relinquished by Date & Time Received on Ice? (Y) N Thermometer#_ Phone: 662-387-5758 Company Name: Choctaw Generation Limited Partnership LLLP Project Manager: Received by Relinquished by Project Name: Sample Identification CCR-5 EVERY DESCRIPTION Semi-Annua State: MS CGLP CCR Printed Name 9-13-22, 09:55 W Sampling Date/Time Rd. 39735 Cooler # Code Matrix Sampler Name Printed: Email Address: Kshe Ton @ envirocomp. net Purchase Order #: Sampler Name Signed: # of Containers Preservative: Grab (G) or Composite (C) G Receipt Temp Corrected(°C) Sample **TDS** Chloride. ist Analyses Requested luoride, Sulfate Shulzon Antimony, Blank X Arsenic Barium, Boron, Company Beryllium Jim Ward Cadmium, Chromium (ooler ead, Calcium Cobalt Date Lithium Molybendum, Selenium Time (6:00 Total Radium Sto / 226 & 228 豆 Notes: Field Test Field Test Field Test QC Level: Level 1 Golers are recieved (3 EACH) Please notify us once all **All Temps are Corrected Values** __2nd Day* __Other*___ Please ship ECS 4-day Normal _Next Day* Immediately. Our normal turn around time is 10 working days Field Testing Turn Around Time & Reporting requests must be prior approved *All rush order Level 2 Page Y of 7 ₽ Matrix:
t W=Water
DW=Drinking evel 3 4=ZnC4H10O6 & 5=ZnC4H10O6 & SO = Soil SE = Sediment 3=NaOH 0 = 0il 6=HNO3 A = Air 8=HCI 9=NaHSO4 7=Na2S2O3 2= H3PO4 Preservation: SL = SludgeL = Liquid S = Solid1= H2SO4 NaOH _Email Water Fax Mail Phone

Project #:

DCN# F316 Rev.#5

Physical Address: 6500 Sunplex Drive, Ocean Springs MS 39564

Issued 8/15/2022 SCH

Print Form

October 04, 2022

Tina Tomek Micro-Methods Lab 6500 Sunplex Drive Ocean Springs, MS 39564

RE: Project: 2209204

Pace Project No.: 30523247

Dear Tina Tomek:

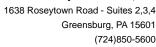
Enclosed are the analytical results for sample(s) received by the laboratory on September 20, 2022. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Greensburg

If you have any questions concerning this report, please feel free to contact me.

Sincerely,


David A. Pichette david.pichette@pacelabs.com (724)850-5617 Project Manager

and Politico

Enclosures

cc: Accounts Payable, Micro-Methods Lab

CERTIFICATIONS

Project: 2209204 Pace Project No.: 30523247

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ANAB DOD-ELAP Rad Accreditation #: L2417

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694

Delaware Certification EPA Region 4 DW Rad

Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET

Guam Certification Hawaii Certification Idaho Certification Illinois Certification Indiana Certification Iowa Certification #: 391

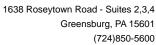
Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221

Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: 2017020 Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991 Missouri Certification #: 235
Montana Certification #: Cert0082
Nebraska Certification #: NE-OS-29-14
Nevada Certification #: PA014572018-1
New Hampshire/TNI Certification #: 297617
New Jersey/TNI Certification #: PA051
New Mexico Certification #: PA01457
New York/TNI Certification #: 10888
North Carolina Certification #: 42706

Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282


South Dakota Certification
Tennessee Certification #: 02867

North Dakota Certification #: R-190

Ohio EPA Rad Approval: #41249

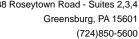
Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 460198 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C

Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

SAMPLE SUMMARY

Project: 2209204
Pace Project No.: 30523247

Lab ID	Sample ID	Matrix	Date Collected	Date Received
30523247001	2209204-01	Water	09/12/22 14:00	09/20/22 09:45
30523247002	2209204-02	Water	09/12/22 16:58	09/20/22 09:45
30523247003	2209204-03	Water	09/12/22 11:50	09/20/22 09:45
30523247004	2209204-04	Water	09/13/22 11:48	09/20/22 09:45
30523247005	2209204-05	Water	09/13/22 10:56	09/20/22 09:45
30523247006	2209204-06	Water	09/13/22 10:51	09/20/22 09:45
30523247007	2209204-07	Water	09/13/22 00:00	09/20/22 09:45
30523247008	2209204-08	Water	09/12/22 16:30	09/20/22 09:45
30523247009	2209204-09	Water	09/12/22 15:39	09/20/22 09:45
30523247010	2209204-10	Water	09/12/22 14:45	09/20/22 09:45
30523247011	2209204-11	Water	09/12/22 13:00	09/20/22 09:45
30523247012	2209204-12	Water	09/13/22 09:55	09/20/22 09:45

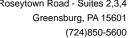


SAMPLE ANALYTE COUNT

Project: 2209204
Pace Project No.: 30523247

Lab ID	Sample ID	Method	Analysts	Analytes Reported
30523247001	2209204-01	EPA 903.1	SLC	1
		EPA 904.0	VAL	1
30523247002	2209204-02	EPA 903.1	SLC	1
		EPA 904.0	VAL	1
30523247003	2209204-03	EPA 903.1	SLC	1
		EPA 904.0	VAL	1
30523247004	2209204-04	EPA 903.1	SLC	1
		EPA 904.0	VAL	1
30523247005	2209204-05	EPA 903.1	SLC	1
		EPA 904.0	VAL	1
30523247006	2209204-06	EPA 903.1	SLC	1
		EPA 904.0	VAL	1
30523247007	2209204-07	EPA 903.1	SLC	1
		EPA 904.0	VAL	1
30523247008	2209204-08	EPA 903.1	SLC	1
		EPA 904.0	VAL	1
30523247009	2209204-09	EPA 903.1	SLC	1
		EPA 904.0	VAL	1
30523247010	2209204-10	EPA 903.1	SLC	1
		EPA 904.0	VAL	1
30523247011	2209204-11	EPA 903.1	SLC	1
		EPA 904.0	VAL	1
30523247012	2209204-12	EPA 903.1	SLC	1
		EPA 904.0	VAL	1

PASI-PA = Pace Analytical Services - Greensburg


ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: 2209204
Pace Project No.: 30523247

Sample: 2209204-01 PWS:	Lab ID: 30523247 Site ID:	7001 Collected: 09/12/22 14:00 Sample Type:	Received:	09/20/22 09:45	Matrix: Water	
			11-26-	A b d	040 N=	0
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Serv					
Radium-226	EPA 903.1	1.64 ± 0.727 (0.212) C:NA T:92%	pCi/L	09/30/22 17:16	3 13982-63-3	
	Pace Analytical Serv	rices - Greensburg				
Radium-228	EPA 904.0	0.958 ± 0.548 (1.01) C:76% T:89%	pCi/L	10/03/22 15:30) 15262-20-1	
Sample: 2209204-02	Lab ID: 30523247		Received:	09/20/22 09:45	Matrix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Serv	rices - Greensburg				
Radium-226	EPA 903.1	0.000 ± 0.498 (1.05) C:NA T:99%	pCi/L	09/30/22 17:16	3 13982-63-3	
	Pace Analytical Serv	rices - Greensburg				
Radium-228	EPA 904.0	0.611 ± 0.489 (0.972) C:78% T:86%	pCi/L	10/03/22 15:30) 15262-20-1	
Sample: 2209204-03	Lab ID: 30523247	7003 Collected: 09/12/22 11:50	Received:	09/20/22 09:45	Matrix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Serv	rices - Greensburg				
Radium-226	EPA 903.1	0.139 ± 0.385 (0.747) C:NA T:98%	pCi/L	09/30/22 17:16	3 13982-63-3	
	Pace Analytical Serv	rices - Greensburg				
Radium-228	EPA 904.0	1.16 ± 0.615 (1.12) C:76% T:90%	pCi/L	10/03/22 15:30) 15262-20-1	
Sample: 2209204-04	Lab ID: 30523247	7004 Collected: 09/13/22 11:48	Received:	09/20/22 09:45	Matrix: Water	
PWS:	Site ID:	Sample Type:				
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Serv	rices - Greensburg				
Radium-226	EPA 903.1	0.302 ± 0.469 (0.813) C:NA T:91%	pCi/L	09/30/22 17:16	3 13982-63-3	
	Pace Analytical Serv	rices - Greensburg				
Radium-228	EPA 904.0	0.754 ± 0.537 (1.05) C:76% T:90%	pCi/L	10/03/22 15:31	15262-20-1	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: 2209204 Pace Project No.: 30523247 Sample: 2209204-05 Lab ID: 30523247005 Collected: 09/13/22 10:56 Received: 09/20/22 09:45 Matrix: Water PWS: Site ID: Sample Type: **Parameters** Method Act ± Unc (MDC) Carr Trac Units Analyzed CAS No. Qual Pace Analytical Services - Greensburg $0.000 \pm 0.436 \quad (0.945)$ EPA 903.1 Radium-226 pCi/L 09/30/22 17:16 13982-63-3 C:NA T:95% Pace Analytical Services - Greensburg $0.855 \pm 0.456 \quad (0.825)$ Radium-228 EPA 904.0 10/03/22 15:54 15262-20-1 pCi/L C:74% T:91% Received: 09/20/22 09:45 Sample: 2209204-06 Lab ID: 30523247006 Collected: 09/13/22 10:51 Matrix: Water PWS: Site ID: Sample Type: **Parameters** Method Act ± Unc (MDC) Carr Trac Units Analyzed CAS No. Qual Pace Analytical Services - Greensburg EPA 903.1 $0.144 \pm 0.330 \quad (0.196)$ Radium-226 pCi/L 09/30/22 17:16 13982-63-3 C:NA T:100% Pace Analytical Services - Greensburg EPA 904.0 $0.819 \pm 0.404 \quad (0.697)$ Radium-228 pCi/L 10/03/22 15:54 15262-20-1 C:79% T:87% Sample: 2209204-07 Lab ID: 30523247007 Collected: 09/13/22 00:00 Received: 09/20/22 09:45 Matrix: Water Sample Type: PWS: Site ID: **Parameters** Method Act ± Unc (MDC) Carr Trac Units Analyzed CAS No. Qual Pace Analytical Services - Greensburg Radium-226 EPA 903.1 $0.287 \pm 0.445 \quad (0.771)$ 09/30/22 17:16 13982-63-3 pCi/L C:NA T:97% Pace Analytical Services - Greensburg $0.664 \pm 0.382 \quad (0.696)$ Radium-228 EPA 904.0 10/03/22 15:54 15262-20-1 pCi/L C:75% T:93% Sample: 2209204-08 Lab ID: 30523247008 Collected: 09/12/22 16:30 Received: 09/20/22 09:45 Matrix: Water PWS: Site ID: Sample Type: **Parameters** Method Act ± Unc (MDC) Carr Trac Units Analyzed CAS No. Qual Pace Analytical Services - Greensburg

REPORT OF LABORATORY ANALYSIS

 $0.444 \pm 0.409 \quad (0.241)$

 $0.766 \pm 0.372 \quad (0.610)$

C:NA T:91%

C:72% T:85%

Pace Analytical Services - Greensburg

pCi/L

pCi/L

09/30/22 17:30 13982-63-3

10/03/22 15:55 15262-20-1

EPA 903.1

EPA 904.0

Radium-226

Radium-228

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: 2209204
Pace Project No.: 30523247

Sample: 2209204-09 PWS:	Lab ID: 30523247 Site ID:	Collected: 09/12/22 15:39 Sample Type:	Received:	09/20/22 09:45 I	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Serv	ices - Greensburg			,	
Radium-226	EPA 903.1	1.06 ± 0.611 (0.239) C:NA T:92%	pCi/L	09/30/22 17:30	13982-63-3	
	Pace Analytical Serv	ices - Greensburg				
Radium-228	EPA 904.0	1.11 ± 0.425 (0.594) C:72% T:87%	pCi/L	10/03/22 15:55	15262-20-1	
Sample: 2209204-10 PWS:	Lab ID: 30523247 Site ID:	7010 Collected: 09/12/22 14:45 Sample Type:	Received:	09/20/22 09:45	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Serv	<u> </u>				
Radium-226	EPA 903.1	0.360 ± 0.677 (1.20) C:NA T:99%	pCi/L	09/30/22 17:30	13982-63-3	
	Pace Analytical Serv	ices - Greensburg				
Radium-228	EPA 904.0	0.766 ± 0.429 (0.768) C:69% T:86%	pCi/L	10/03/22 15:55	15262-20-1	
Sample: 2209204-11 PWS:	Lab ID: 30523247 Site ID:		Received:	09/20/22 09:45	Matrix: Water	
		Sample Type:			0.0.1	
Parameters —	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed —	CAS No.	Qual
	Pace Analytical Serv	•				
Radium-226	EPA 903.1	0.917 ± 0.510 (0.191) C:NA T:101%	pCi/L	09/30/22 17:30	13982-63-3	
	Pace Analytical Serv	ices - Greensburg				
Radium-228	EPA 904.0	1.00 ± 0.426 (0.678) C:74% T:91%	pCi/L	10/03/22 15:55	15262-20-1	
Sample: 2209204-12 PWS:	Lab ID: 30523247 Site ID:	7012 Collected: 09/13/22 09:55 Sample Type:	Received:	09/20/22 09:45 I	Matrix: Water	
Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
	Pace Analytical Serv	ices - Greensburg				
Radium-226	EPA 903.1	0.485 ± 0.392 (0.219) C:NA T:95%	pCi/L	09/30/22 17:30	13982-63-3	
	Pace Analytical Serv	ices - Greensburg				
Radium-228	EPA 904.0	0.495 ± 0.365 (0.700) C:68% T:87%	pCi/L	10/03/22 15:55	15262-20-1	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALITY CONTROL - RADIOCHEMISTRY

Project: 2209204
Pace Project No.: 30523247

QC Batch: 534405 Analysis Method: EPA 903.1

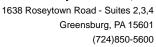
QC Batch Method: EPA 903.1 Analysis Description: 903.1 Radium-226

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 30523247001, 30523247002, 30523247003, 30523247004, 30523247005, 30523247006, 30523247007,

 $30523247008,\,30523247009,\,30523247010,\,30523247011,\,30523247012$

METHOD BLANK: 2592830 Matrix: Water


Associated Lab Samples: 30523247001, 30523247002, 30523247003, 30523247004, 30523247005, 30523247006, 30523247007,

30523247008, 30523247009, 30523247010, 30523247011, 30523247012

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-226
 0.122 ± 0.280 (0.451) C:NA T:94%
 pCi/L
 09/30/22 17:01

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project: 2209204
Pace Project No.: 30523247

QC Batch: 534407 Analysis Method: EPA 904.0

QC Batch Method: EPA 904.0 Analysis Description: 904.0 Radium 228

Laboratory: Pace Analytical Services - Greensburg

Associated Lab Samples: 30523247001, 30523247002, 30523247003, 30523247004, 30523247005, 30523247006, 30523247007,

 $30523247008,\,30523247009,\,30523247010,\,30523247011,\,30523247012$

METHOD BLANK: 2592835 Matrix: Water

Associated Lab Samples: 30523247001, 30523247002, 30523247003, 30523247004, 30523247005, 30523247006, 30523247007,

30523247008, 30523247009, 30523247010, 30523247011, 30523247012

 Parameter
 Act ± Unc (MDC) Carr Trac
 Units
 Analyzed
 Qualifiers

 Radium-228
 0.0140 ± 0.284 (0.660) C:74% T:93%
 pCi/L
 10/03/22 12:29

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 2209204 Pace Project No.: 30523247

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Act - Activity

Date: 10/04/2022 05:04 PM

Unc - Uncertainty: For Safe Drinking Water Act (SDWA) analyses, the reported Unc. Is the calculated Count Uncertainty (95% confidence interval) using a coverage factor of 1.96. For all other matrices (non-SDWA), the reported Unc. is the calculated Expanded Uncertainty (aka Combined Standard Uncertainty, CSU), reported at the 95% confidence interval using a coverage factor of 1.96.

Gamma Spec: The Unc. reported for all gamma-spectroscopy analyses (EPA 901.1), is the calculated Expanded Uncertainty (CSU) at the 95.4% confidence interval, using a coverage factor of 2.0.

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

Due

Water Sampled: 09/12/2022 14:00

09/22/2022 10/10/2022 14:00

SUBCONTRACT ORDER

Sending Laboratory:

Micro-Methods Laboratory, Inc.

6500 Sunplex Drive

Ocean Springs, MS 39564 Phone: 228.875.6420

Fax: 228.875.6423

Project Manager: Teresa Meins

Radium, Total 226 & 228 by EPA 903.1 & 90

1000mL Plastic w/HNO3 (A) 1000mL Plastic w/HNO3 (B)

Subcontracted Laboratory:

Pace Analytical-7 1638 Roseytown Rd. Suites 2, 3, 4

Greensburg, PA 15601 Phone: (724) 850-5600

Comments

Sample Name: MW-9

Fax: -

WO#: 30523247

Work Order: 2209204

Sample ID: 2209204-01

Containers Supplied:

Analysis

Sample ID: 2209204-02 W	ater Sampled:	09/12/2022 .	16:58 Sample	Name: OW-2	
Radium, Total 226 & 228 by EPA 903	3.1 & 90 09/22/2	022 10/10/20	22 16:58		
Containers Supplied: 1000mL Plastic w/HNO3 (A) 1000ml	Plastic w/HNO3 (B)				
Sample ID: 2209204-03 W	ater Sampled:	09/12/2022 .	11:50 Sample	Name: MW-13	
Radium, Total 226 & 228 by EPA 903	3.1 & 90 09/22/2	022 10/10/20	22 11:50		
Containers Supplied: 1000mL Plastic w/HNO3 (A) 1000ml	Plastic w/HNO3 (B)				
Sample ID: 2209204-04 W	ater Sampled:	09/13/2022 .	11:48 Sample	Name: MW-7	
Radium, Total 226 & 228 by EPA 903	3.1 & 90 09/22/2	022 10/11/20	22 11:48		
Containers Supplied: 1000mL Plastic w/HNO3 (A) 1000ml	Plastic w/HNO3 (B)				
Sample ID: 2209204-05 W	ater Sampled:	09/13/2022 .	10:56 Sample	Name: MW-14	
Radium, Total 226 & 228 by EPA 90:	9/15/220	022 10/11/20 1030	22 10:56	05 9/15	1220 1630 Date
Released By V	/ / Date		Received By	Malyn	9-20-22 9:45
Released By	Date		Received By	, ,	Date
Released By	Date		Received By		Date
Released By	Date		Received By		Date
Released By	Date		Received By		Date
		Page	1 of 3		Page 11 of 15

Expires

SUBCONTRACT ORDER

(Continued)

Work Order: 2209204 (Continued)

#30523247

Analysis	Due	Expires	Comments		
Containers Supplied: 1000mL Plastic w/HNO3 (A) 1000mL Plastic w/	'HNO3 (B)				
Sample ID: 2209204-06 Water Sa	mpled: 09/1	3/2022 10:51	Sample Name:	Field Blank	
Radium, Total 226 & 228 by EPA 903.1 & 90	09/22/2022	10/11/2022 10:51			
Containers Supplied: 1000mL Plastic w/HNO3 (A) 1000mL Plastic w/	HNO3 (B)				
Sample ID: 2209204-07 Water Sa	mpled: 09/1	3/2022 00:00	Sample Name:	Duplicate	
Radium, Total 226 & 228 by EPA 903.1 & 90 Containers Supplied:	09/22/2022	10/11/2022 00:00			
1000mL Plastic w/HNO3 (A) 1000mL Plastic w/					
	-	2/2022 16:30	Sample Name:	MW-12	
Radium, Total 226 & 228 by EPA 903.1 & 90	09/22/2022	10/10/2022 16:30			
Containers Supplied: 1000mL Plastic w/HNO3 (A) 1000mL Plastic w/	HNO3 (B)				
Sample ID: 2209204-09 Water Sa	mpled: 09/1	2/2022 15:39	Sample Name:	CCR-2	
Radium, Total 226 & 228 by EPA 903.1 & 90	09/22/2022	10/10/2022 15:39			
Containers Supplied: 1000mL Plastic w/HNO3 (A) 1000mL Plastic w/	HNO3 (B)				
Sample ID: 2209204-10 Water Sa	mpled: 09/1	2/2022 14:45	Sample Name:	CCR-3	
Radium,Total 226 & 228 by EPA 903.1 & 90	09/22/2022	10/10/2022 14:45			
Containers Supplied: 1000mL Plastic w/HNO3 (A) 1000mL Plastic w/	HNO3 (B)				
Sample ID: 2209204-11 Water Sa	mpled: 09/1.	2/2022 13:00	Sample Name:	CCR-4	
Radium,Total 226 & 228 by EPA 903.1 & 90	09/22/2022	10/10/2022 13:00			
Containers Supplied: 1000mL Plastic w/HNO3 (A) 1000mL Plastic w/H	HNO3 (B)				
Sample ID: 2209204-12 Water Sa	mpled: 09/1.	3/2022 09:55	Sample Name:	CCR-5	
Swah Jonet 9/15/	220 163		WS	9	1/15/2201630
Released By	Date	Receive	ed By	1	Date
<i>UVS</i>			- We	hu	9-20-20-9:41
Released By	Date	Receive	ed By//	<i>Y</i>	Date
Released By	Date	Receive	ed By		Date
Released By	Date	Receive	ed By		Date
Released By	Date	Receive	ed By		Date

SUBCONTRACT ORDER

(Continued)

Work Order: 2209204 (Continued)

#30523247

Analysis	Due	Expires	Comments	
Sample ID: 2209204-12 <i>Water</i>	Sampled: 09/	13/2022 09:55	Sample Name: CCR-5	
Radium, Total 226 & 228 by EPA 903.1 & 9	90 09/22/2022	10/11/2022 09:55		
Containers Supplied: 1000mL Plastic w/HNO3 (A) 1000mL Plastic	w/HNO3 (B)			

Swah Jomes	9/15/2201630	WS 9/15	100
Released By	Date	Received By	Date
MS		1 Charles	9.20.22-9:4
Released By	Date	Received By	Date
Released By	Date	Received By	Date
Released By	Date	Received By	Date
Released By	Date	Received By	Date

Pittsburgh La	b Sample Condi	ition !	Upo	n Re	eceipt		
Pace Analytical	Client Name: (<u>nicr</u>	<u>O-</u>	<u>me</u>	thods	Project #	30523247
Courier: 🗌 Fed Ex 🗹	UPS USPS Clier	nt 🗆	Comm	ercial	Pace Other		Label <u>JK</u>
Tracking #: <u>17 353</u>						6804 4682	LIMS Login VD
Custody Seal on Cooler			10	•	[no	
Thermometer Used		Туре	of Ice:	Wei	Blue None		
Cooler Temperature	Observed Temp		٠c	Corr	ection Factor:	_ °C _{Final}	Temp: ·C
Temp should be above freez	ing to 6°C		•				·
					pH paper Lot#		Initials of person examining
Comments:		Yes	No	N/A	10:00421		
Chain of Custody Present	•	1			1.		
Chain of Custody Filled O	ut:			<u> </u>	2.		
Chain of Custody Relinqu	ished:	/_			3.		
Sampler Name & Signatur	re on COC:				4.		
Sample Labels match CO	G:			<u> </u>	5.		
-Includes date/time/ID	Matrix:	w	· · · · · · · · · · · · · · · · · · ·	г —			
Samples Arrived within Ho	old Time:				6.		
Short Hold Time Analysi	s (<72hr remaining):	ļ			7.		
Rush Turn Around Time	Requested:	ļ			8.		
Sufficient Volume:					9.	3.000	
Correct Containers Used:					10.		
-Pace Containers Used	:						
Containers Intact:					11.		
Orthophosphate field filter	ed				12.		
Hex Cr Aqueous sample fi	eld filtered				13.		
Organic Samples check	ed for dechlorination:			/	14.		
Filtered volume received for					15.		
All containers have been chec	·				16.PH42		
exceptions: VOA, coliforn	1, TOC, O&G, Phenolics,	Radon,					
All containers meet method	d preservation				Initial when	Date/time of	
requirements.			i		completed JK	preservation	
					Lot # of added preservative		
Headspace in VOA Vials (>6mm):			_	17.		
Trip Blank Present:					18.		
Trip Blank Custody Seals F							
Rad Samples Screened <	0.5 mrem/hr				Initial when completed: JK	Date: 9.20	22 Survey Meter SN:1/5(03)
Client Notification/ Resolu	ution:	L.,				<u> </u>	
Person Contacted:				Date/1	lme:	Contac	ted By:
Comments/ Resolution:							
						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
,							

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

A check in this box indicates that additional information has been stored in ereports.

*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status section of the Workorder Edit Screen.

Pace Greensburg Lab -Sample Container Count

#30523247

Profile Number 14460

Notes

UE9B

ZPLC

MGKN

WGFU

VOAK

U69V

T65V

H69∧ anoe

S690

Bb32 BP3N ВРЗС USAB

BP2S

ยפוח

TGDA

NGDA UE9A

AG3S

USDA

TIDA

SIDA

HrəA

Matrix

Sample Line Item

÷٨ wł

~ $^{\circ}$ $^{\circ}$ 4 Ŋ Θ ~

2209204 4

Site

Client

Uraa

ВЫИ 00 BGSN

3 3 かく

さ

7

+

 $\overline{\Gamma}$

大

19

7

ω တ

さる

Containe	Container Codes		
	Glass	S	
RON	f Gallon Jug with HNO3	DG9S	DG9S 40mL amber VOA vial H2SO4
AGSU	100mL amber glass unprserved	VG9U	VG9U 40mL clear VOA vial
AG5T	100mL amber glass Na Thiosulfate	VG9T	40mL clear VOA vial Na Thiosul
GJN	1 Gallon Jug	VG9H	40mL clear VOA vial HCI
AG1S	1L amber glass H2SO4	JGFU	4oz amber wide jar
AG1H	1 amber glass HCl	WGFU	WGFU 4oz wide jar unpreserved
AG1T	1L amber glass Na Thiosulfate	BG2U	BG2U 500mL clear glass unpreserved
BG1U	1L clear glass unpreserved	AG2U	AG2U 500mL amber glass unpreserved
AG3S	¢50mL amber glass H2SO4	WGKU	WGKU 8oz wide jar unpreserved
AG3U	250mL amber glass unpreserved		

		le Solid			
Misc.	5g Encore	Kit for Volatile Solid	Wipe/Swab	Ziploc Bag	
lastic /	EZI	VOAK		ZPLC	
۵			ate		

120mL Coliform Na Thiosulfate

L plastic unpreserved 250mL plastic H2SO4

1L plastic HNO3

1/2 Gallon Cubitainer

1 Gallon Cubitainer

GCUB 12GN SP5T BP1N BP1U BP3S BP3N

Water	Solid	Non-aqueous liquid	Wipe
WT	SL	OL.	WP

500mL plastic unpreserved

500mL plastic H2SO4

BP2S BP2U

250ml plastic NAOH

250mL plastic unpreserved

врзи BP3C

250mL plastic HNO3

FNV.FRM.GRUR.0079 00 2905-2020

Page 15 of 15 Page 47 of 47

APPENDIX C

FIELD SAMPLING DATA

Monitor Well:	MW-7	Well Diameter:	4	inches
Date: 03/2	24/22	Water Column Height:	22.87	4
Sampling Method:	Pumped	(Measured Well Depth - Static Water		, IL
Measured Well Depth:	56.92 ft	TOC Elevation ⁽¹⁾ :	571.76	ft
Static Water Level: (Depth to Water)	34.05 ft	GW Elevation: (TOC Elevation - Static Water Level	537.71	
Maximum Drawdown Depth (10% of WCH + SWL)	<u>36.34</u> ft	Well Volume: (Water Column Height x Well Casing	14.87	gal etor)

Start	Pump
Otait	rump

Date	Volume Purged (L)	Time	Elapsed Time (min)	Water Level (ft)	Turbidity (NTU)	Temp (C)	рН	Conductivity (uS/cm)
3/24/22		14:52			In the second		No.	Name of the last
	2.0 L	15:02			0.79	19.1	5.80	248.9
		15:05			0.74	18.0	6.31	247.3
		15:08			0.63	17.7	6.29	235.2
		15:11			0.33	17.5	6.39	235.2
		15:14			0.40	17.4	6.31	235.1
	7.0 L	15:17		35.29	0.56	17.4	6.42	234.7
				-				
				FINAL	L DEPTH			
-								
-								
H								
-								
								:

Sample	Time:	
Sample	Analyzed	for:

Appendix III (Boron, Calcium, Chloride, Fluoride, Sulfate, & TDS). pH measured in the field. Appendix IV (Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Cobalt, Fluoride, Lead, Lithium, Molybdenum, Selenium, & Radium 226/228).

Total Drawdown (ft): Drawdown/Water Column (%):

1.24 ft (SWL - Final Depth) 5.42

(Total Drawdown / WCH)

Sampler Signature

If possible, total drawdown will not exceed 0.33 ft.

pH: 0.1 standard units					
conductivity:	within 3%				
temperature:	0.1 deg. C				
turbidity:	<5 NTU or 10%				

Well Casing Volumes (gal/ft)					
1" = 0.041	1 1/2 " = 0.10	2" = 0.16	2 1/2" = 0.24		
= 0.37	3 1/2" = 0.50	4" = 0.65	6" = 1.46		
3" = 2.61	10" = 4.08	12" = 5.87	0 - 1.40		

Monitor Well:	MW-14	Well Diameter:	4inches
Date:	3/24/22	Water Column Height:	32.35 ft
Sampling Method:	Pumped	(Measured Well Depth - Static W	
Measured Well Depth		TOC Elevation ⁽¹⁾ :	593.84 ft
Static Water Level: (Depth to Water)	28.62ft	GW Elevation: (TOC Elevation - Static Water Le	565,22ft
Maximum Drawdown (10% of WCH + SWL)	Depth 31.85 ft	Well Volume: (Water Column Height x Well Cas	21.03 gal

Start	Pump

Date	Volume Purged (L)	Time	Elapsed Time (min)	Water Level (ft)	Turbidity (NTU)	Temp (C)	рН	Conductivity (uS/cm)
3/24/22		13:44						
	3.0 L	13:54			0.16	17.7	5.92	130.7
		13:57			0.55	19.1	5.34	126.1
		14:00			0.73	18.9	5.25	122.1
		14:03			0.82	19.0	5.10	124.1
		14:06			0.36	19.2	5.07	125.0
	7.0 L	14:09			0.60	19.1	4.96	121.7
		14:11	(29.80	0.83	19.0	4.96	/22.3
				FINA	L DEPTH	4		

Sample	Time:
Sample	Analyzed for:

14:15

Appendix III (Boron, Calcium, Chloride, Fluoride, Sulfate, & TDS). pH measured in the field. Appendix IV (Antimony, Arsenic,

Barium, Beryllium, Cadmium, Chromium, Cobalt, Fluoride, Lead, Lithium, Molybdenum, Selenium, & Radium 226/228).

Total Drawdown (ft):
Drawdown/Water Column (%):

3.65

(SWL - Final Depth)

(Total Drawdown / WCH)

FIELD BLANK 13:54

Sampler Signature:

4/22

If possible, total drawdown will not exceed 0.33 ft.

Well Stabilization				
pH:	0.1 standard units			
conductivity:	within 3%			
temperature:	0.1 deg. C			
turbidity:	<5 NTU or 10%			

Well Casing Volumes (gal/ft)				
1" = 0.041	1 1/2 " = 0.10	2" = 0.16	2 1/2" = 0.24	
3" = 0.37	3 1/2" = 0.50	4" = 0.65	6" = 1.46	
8" = 2.61	10" = 4.08	12" = 5.87	0 - 1.40	

Monitor Well:	CCR-5	Well Diameter:	4 inches
Date: 3/24	1/22	Winter Column Halaki	77 0
Sampling Method:	Pumped	Water Column Height: (Measured Well Depth - Static W	/ater Level)
Measured Well Depth:	34.55 ft	TOC Elevation ⁽¹⁾ :	470.46 ft
Static Water Level: (Depth to Water)	ft	GW Elevation: (TOC Elevation - Static Water Le	463.7/ ft
Maximum Drawdown Depth (10% of WCH + SWL)	<u>9.53</u> ft	Well Volume: (Water Column Height x Well Ca	18.07 gal

Start Pump

Date	Volume Purged (L)	Time	Elapsed Time (min)	Water Level (ft)	Turbidity (NTU)	Temp (C)	рН	Conductivity (uS/cm)
3/24/22	4	11:54	للحريا إلكات					
	2.0 L	12:01			216	17.7	6.90	826.8
		12:04			357	17.8	6.59	832.9
		12:07			395	17.7	6.68	835.6
		12:10			478	17.4	6.58	827.1
		12 13			418	17.6	6.59	841.3
	5.5L	12:16		7.66)564	17.9	6.47	847.8
							- 1	011.0
•				FINA	L DEPTH			

Sample	Time:	
Sample	Analyzed	for:

12:17

Appendix III (Boron, Calcium, Chloride, Fluoride, Sulfate, & TDS). pH measured in the field. Appendix IV (Antimony, Arsenic,

Barium, Beryllium, Cadmium, Chromium, Cobalt, Fluoride, Lead, Lithium, Molybdenum, Selenium, & Radium 226/228)

Total Drawdown (ft) Drawdown/Water Column (%):

(SWL - Final Depth)

(Water Column Height x Well Casing Volume Factor)

(Total Drawdown / WCH)

Sampler Signature:

If possible, total drawdown will not exceed 0.33 ft.

Well	Stabilization
pH:	0.1 standard units
conductivity:	within 3%
temperature:	0.1 deg. C
turbidity:	<5 NTU or 10%

Well Casing Volumes (gal/ft)			
1" = 0.041	1 1/2 " = 0.10	2" = 0.16	2 1/2" = 0.24
3" = 0.37	3 1/2" = 0.50	4" = 0.65	6" = 1.46
8" = 2.61	10" = 4.08	12" = 5.87	0 1.40

Monitor Well:	MW-13	Well Diameter:	4inches
Date: 03/2	4/2022	Water Column Height:	44,86 ft
Sampling Method:	Pumped	(Measured Well Depth - Static W	/ater Level)
Measured Well Depth:	106 ft	TOC Elevation ⁽¹⁾ :	584.48 ft
Static Water Level:	_ 61.14 ft	GW Elevation:	523.34tt
(Depth to Water)	/C /2	(TOC Elevation - Static Water Le	
Maximum Drawdown Depth (10% of WCH + SWL)	<u>03,63</u> ft	Well Volume: (Water Column Height x Well Ca	29.16 gal sing Volume Factor)

Start	Pump
Start	rump

Date 3/24/22	Volume Purged (L)	Time	Elapsed Time (min)	Water Level (ft)	Turbidity (NTU)	Temp (C)	рН	Conductivity (uS/cm)
3/24/22	2.5L	10:44						
	CIDE	10:56			5.30	19.0	6.73	222.9
		10:59			1.37	18.5	6.76	217.9
		11:02			0.62	18.2	6.87	217.4
	6.5L	11:05		62.55	5.16	18.2	6.80	217.6
				02103	10.10	1016	6.78	218.0
				FINAL	DEPTH			
							-	

Sample Time:	11:10	
Sample Analyzed for:	Appendix III (Boron, Calcium, Chloride, Fluoride, Sulfate, & TDS), pH measured in the field. Appendix IV (Ar	ntimony. Arsenic
	Barium, Beryllium, Cadmium, Chromium, Cobalt, Fluoride, Lead, Lithium, Molybdenum, Selenium, & Radiun	n 226/228\
Total Drawdown (ft):	(SWL - Final Depth)	1220/220).
Drawdown/Water Column (%):	2.25 (Total Drawdown / WCH)	

Sampler Signature:

If possible, total drawdown will not exceed 0.33 ft.

If drawdown exceeds 10% of water column height, flow will be stopped and well allowed to recover.

Well Stabilization			
pH:	0.1 standard units		
conductivity:	within 3%		
temperature:	0.1 deg. C		
turbidity:	<5 NTU or 10%		

Well Casing Volumes (gal/ft)			
1" = 0.041	1 1/2 " = 0.10	2" = 0.16	2 1/2" = 0.24
3" = 0.37	3 1/2" = 0.50	4" = 0.65	6" = 1.46
8" = 2.61	10" = 4.08	12" = 5.87	0 - 1.40

(Total Drawdown / WCH)

Monitor Well:	CCR-4	Well Diameter:	4 inche
Date: <u>03</u>	23/22		
Sampling Method:	Pumped	Water Column Height: 28. (Measured Well Depth - Static Water Leve	.27 _{ft}
Measured Well Depth: Static Water Level: (Depth to Water)	53 ft 2473 ft	TOC Elevation ⁽¹⁾ : 505	5.68 ft 2.95 ft
Maximum Drawdown Deptl (10% of WCH + SWL)	27.56 ft	Well Volume: (Water Column Height x Well Casing Volum	38 gal ne Factor)

Start Pump

Date 2/02/20	Volume Purged (L)	Time	Elapsed Time (min)	Water Level (ft)	Turbidity (NTU)	Temp (C)	рН	Conductivity (uS/cm)
3/23/22	0.4.4	16:37						
	20 L	16:45			3.68	16.4	6.27	383390
		16:48			3.68	16.5	6.28	328.8 333.1
	501	16:51		000	1.75	16.5	6.31	333.1
	5.0 L	16:54		26.11)4.65	16.5	6.31	333.0
				T			-	
				FINA	L DEPTH			
					-			
						-		

Sample	Time:	
Sample	Analyzed	for:

6:55

Appendix III (Boron, Calcium, Chloride, Fluoride, Sulfate, & TDS) pH measured in the field. Appendix IV (Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Cobalt, Fluoride, Lead, Lithium, Molybdenum, Selenium, & Radium 226/228).

Total Drawdown (ft):

(SWL - Final Depth)

Drawdown Water Column (%):

(Total Drawdown / WCH)

Sampler Signature:

If possible, total drawdown will not exceed 0.33 ft.

Stabilization
0.1 standard units
within 3%
0.1 deg. C
<5 NTU or 10%

	Well Casing	Volumes (gal/ft)	
1" = 0.041	1 1/2 " = 0.10	2" = 0.16	2 1/2" = 0.24
3" = 0.37	3 1/2" = 0.50	4" = 0.65	6" = 1.46
8" = 2.61	10" = 4.08	12" = 5.87	0 - 1.40

Monitor Well: Co	CR-3	Well Diameter:	4	inches
Date: 03/2	3/22			
Sampling Method:	Pumped	Water Column Height: (Measured Well Depth - Static Water	28.58 Level)	ft
Measured Well Depth:	53ft	TOC Elevation ⁽¹⁾ :	504.78	ft
Static Water Level: (Depth to Water)	24.42 ft		480.36	ft
Maximum Drawdown Depth (10% of WCH + SWL)	27.28 ft	(TOC Elevation - Static Water Level) Well Volume: (Water Column Height x Well Casing '	8.58	gal tor)

Start Pump

Date	Volume Purged (L)	Time	Elapsed Time (min)	Water Level (ft)	Turbidity (NTU)	Temp (C)	рН	Conductivity (uS/cm)
3/23/22		15:24						
	206	15:30			4,38	17.4	5.73	611.1
		15:33			2.73	17.3	5.79	593.1
		15:36			11.49	17.2	5.80	588.7
		15:39			19.10	17.1	5.81	587.2
		15:41			13.23	17.0	5.80	584.5
		15:44		Ì	8.53	17.0	5.80	581.6
	6.0L	15.47		26.32	9.29	17.0	5.82	581.6 582.1
							7. 0	
				FINAL	DEPTH			

Sample Time:	15:52	
Sample Analyzed for:	Appendix III (Boron, Calcium, Chloride, Fluoride, Sulfate, & TDS), pH measured in the field. Appendix IV (Antimony, Arse	nic.
Total Daniel (6)	Barium, Beryllium, Cadmium, Chromium, Cobalt, Fluoride, Lead, Lithium, Molybdenum, Selenium, & Radium 226/228).	
Total Drawdown (ft):	(SWL - Final Depth)	
Drawdown Water Column (%):	(Total Drawdown / WCH)	

Sampler Signature:

If possible, total drawdown will not exceed 0.33 ft.

Well Stabilization			
0.1 standard units			
within 3%			
0.1 deg. C			
<5 NTU or 10%			

	Well Casing	Volumes (gal/ft)	
1" = 0.041	1 1/2 " = 0.10	2" = 0.16	2 1/2" = 0.24
3" = 0.37	3 1/2" = 0.50	4" = 0.65	6" = 1.46
8" = 2.61	10" = 4.08	12" = 5.87	0 - 1.40

Monitor Well:	MW-9	Well Diameter:	4	inche
Date: 03/	123/2022		Loc	
Sampling Method:	Pumped	Water Column Height: (Measured Well Depth - Static Water Le	f. 85 vel)	- ft
Measured Well Depth:	21.74 ft	TOC Elevation ⁽¹⁾ : 48	80.04	ft
Static Water Level: (Depth to Water)	<u>6,89</u> ft	GW Elevation: (TOC Elevation - Static Water Level)	73.15	ft
Maximum Drawdown Depth (10% of WCH + SWL)	_ 8.38 _ft	Well Volume: (Water Column Height x Well Casing Vol	65	gal tor)

Start Pump

Date 3/23/22	Volume Purged (L)	Time	Elapsed Time (min)	Water Level (ft)	Turbidity (NTU)	Temp (C)	рН	Conductivity (uS/cm)
3/23/22	101	14:13		May Land	N INCOME		MINI	
	1.5 4	14:18			0,35	15.7	4.63	1162.0
_		14:21			0.42	15.7	4.39	1221.0
-		14:24			0.50	15.7	4.18	1229.0
	6.0 L	14:27			0.57	15.7	4.12	1246.0
	6.0 L	14:30		7.94	0.46	15.7	4.14	1238.0
			_	-				
				FINAL	- DGPTH			

Sample Time:	
Sample Analyzed for:	Appendix III (Boron, Calcium, Chloride, Fluoride, Sulfate, & TDS). pH measured in the field. Appendix IV (Antimony, Arsenic,
Total Drawdown (ft)	Banum, Beryllium, Cadmium, Chromium, Cobalt, Fluoride, Lead, Lithium, Molybdenum, Selenium, & Radium 226/228)
Total Drawdown (ft):	(SWL - Final Depth)
Drawdown/Water Column (%):	(Total Drawdown / WCH)
Diawdowii/Vrates Column (%):	24-1

Sampler Signature:

If possible, total drawdown will not exceed 0.33 ft.

If drawdown exceeds 10% of water column height, flow will be stopped and well allowed to recover.

Well Stabilization	
pH:	0.1 standard units
conductivity:	within 3%
temperature:	0.1 deg. C
turbidity:	<5 NTU or 10%

Nell Casing Volumes	(gal/ft)		
1" = 0.041	1 1/2 " = 0.10	2" = 0.16	2 1/2" = 0.24
3" = 0.37	3 1/2" = 0.50	4" = 0.65	6" = 1.46
8" = 2.61	10" = 4.08	12" = 5.87	0 - 1.40

Monitor Well:CCR-2	Well Diameter:
Date: 03/23/2022	inches4inches
Sampling Method: Measured Well Depth: Static Water Level: (Depth to Water) Maximum Drawdown Depth (10% of WCH + SWL) Pumped 84.5 ft 48.88 ft	Water Column Height: 35, 62 ft (Measured Well Depth - Static Water Level) TOC Elevation: (TOC Elevation - Static Water Level) Well Volume: 23,15 gal (Water Column Height x Well Casing Volume Factor)

Start Pump

Date 3 /23/22	Volume Purged (L)	Time 13:04	Elapsed Time (min)	Water Level (ft)	Turbidity (NTU)	Temp (C)	pH	Conductivity (uS/cm)
4-9-5	2.25							(40.000)
	2165	13:14			0.8	16.6	6.33	204.7
		13:17			0.20	16.5	6.51	202.0
		13.00			0.3	16.6	6.64	201.7
	6.0	13:23			0.24	16.6	6.57	203.7
	6.0	13127		51,28	0.06	16.7	6.54	203.1
						100	0.0.	203.1
				FINAL	DEPTH			
	-							
	_						-	
							_	

Sample	Time:	
Sample	Analyzed	for:

Appendix III (Boron, Calcium, Chloride, Fluoride, Sulfate, & TDS). pH measured in the field. Appendix IV (Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Cobalt, Fluoride, Lead, Lithium, Molybdenum, Selenium, & Radium 226/228).

2. 40 (SWL - Final Depth)

Total Drawdown (#) Drawdown/Water column (%):

(Total Drawdown / WCH)

Sampler Signature:

If possible, total drawdown will not exceed 0.33 ft.

Well	Stabilization
pH:	0.1 standard units
conductivity:	within 3%
temperature:	0.1 deg. C
turbidity:	<5 NTU or 10%

	Well Casing	Volumes (gal/ft)	
1" = 0.041 3" = 0.37 8" = 2.61	1 1/2 " = 0.10 3 1/2" = 0.50 10" = 4.08	2" = 0.16 4" = 0.65 12" = 5.87	2 1/2" = 0.24 6" = 1.46

Monitor Well:	MW-12	Well Diameter:	4	inches
Date: 03	123/2022			
Sampling Method:	Pumped	Water Column Height: (Measured Well Depth - Static Wa	15,39 ater Level)	_ft
Measured Well Depth:	19.09 ft	TOC Elevation ⁽¹⁾ :	474.19	ft
Static Water Level: (Depth to Water)		GW Elevation: (TOC Elevation - Static Water Lev	470.49	ft
Maximum Drawdown Depth (10% of WCH + SWL)	<u>5.24</u> ft	Well Volume: (Water Column Height x Well Casi	10.00	gal

Start	Pump	

Date	Volume Purged (L)	Time	Elapsed Time (min)	Water Level (ft)	Turbidity (NTU)	Temp (C)	рН	Conductivity (uS/cm)
3/23/22		10:18	277					
- A	275	10:42			2.38	12.4	5.58	441.9
		10:46			1.94	12.4	5.73	HUE 8
		10:50	/		1,23	12.4	5.70	449.5
	4.25	10:54		4.96	118	12.4	5.72	449.1
							0.75	114.1
				FINAL	DEPTH			

2" = 0.16

4" = 0.65

12" = 5.87

2 1/2" = 0.24

6" = 1.46

Sample Time:	10:58
Sample Analyzed for:	Appendix III (Boron, Calcium, Chloride, Fluoride, Sulfate, & TDS). pH measured in the field. Appendix IV (Antimony, Arsenic,
	Barium, Beryllium, Cadmium, Chromium, Cobalt, Fluoride, Lead, Lithium, Molybdenum, Selenium, & Radium 226/228).
Total Drawdown (ft):	
Drawdown/Water Column (%):	8.19 (Total Drawdown / WCH)

Sampler Signature:

If possible, total drawdown will not exceed 0.33 ft.

	Stabilization		Well Casing	Volumes (gal/ft)
pH: conductivity: temperature: turbidity:	0.1 standard units within 3% 0.1 deg. C <5 NTU or 10%	1" = 0.041 3" = 0.37 8" = 2.61	1 1/2" = 0.10 3 1/2" = 0.50 10" = 4.08	2" = 0.1 4" = 0.6 12" = 5.

		SCIVIL	ANNUAL A	29E99MEN	II MONITOI	RING EVENT			
Monitor Well:	OW-	2	2		Well Diame	eter:	4	inches	
Date:	03/23	12.22	 				1973		
Sampling Method	:	Pumped			Water Colu (Measured We	ı mn Height: ell Depth - Static Wa	17.16 iter Level)	_ft	
Measured Well De	pth:	27.05	- ft		TOC Eleva			e.	
Static Water Level	:	9,89	ft		GW Elevati			_ft 51.f+	
(Depth to Water)		11 /1	• **			า - Static Water Lev	el)	⊅ 1 4+	
Maximum Drawdo (10% of WCH + SWL)	wn Depth	11.61	_ft		Well Volum		11.15	_gal ctor)	
		Volume		Elapsed	Water				
	Date	Purged (L)	Time	Time (min)	Level (ft)	Turbidity (NTU)	Temp (C)	pН	Conductivity (uS/cm)
Start Pump	3/23/22		9:37					EU III	(uo/oiii)
		4L	9:45			0.34	15.8	5.57	509.1
4			9:49			0.42	15.8	5,63	506.9
* STOPPED		6.25 L	9:53		11.96*	0.70	15.8	5.66	5046
PUMP - WAIT FOR					_		10.0	2,00	30716
WAIT FOR	3/23/22			1:26 /	11.30)			
RECHARGE				(11:19)	~				
KE CHIMOC					FINA	L DEPTH			
						,,,			
:19 WELL									
RECHARGE									
TO 11.30									
,									
-									
-									
+									
ŀ									
+									
ŀ	aller .								
L									
Sample Time:		1	1:20)					
Sample Analyzed fo	r: 7	Appendix III (Bo	ron, Calcium, C	hloride, Fluoride.	Sulfate, & TDSV	pH measured in the	a field Annand	iv IV//Anti	- A
	172	Barium, Berylliur	n, Cadmium, C	hromium, Cobalt,	Fluoride, Lead, I	Lithium, Molybdenu	n, Selenium 8	Radium 226	ny, Arsenic, /228)
Total Drawdown (ft)				1.41		WL - Final Depth)		. manufff 220	
Drawdown/Water Co	plamn (%):		8.22			otal Drawdown / W	CH/		

If possible, total drawdown will not exceed 0.33 ft.

If drawdown exceeds 10% of water column height, flow will be stopped and well allowed to recover.

Well	Stabilization
pH:	0.1 standard units
conductivity:	within 3%
temperature:	0.1 deg. C
turbidity:	<5 NTU or 10%

	Well Casing	Volumes (gal/ft)	
1" = 0.041	1 1/2 " = 0.10	2" = 0.16	2 1/2" = 0.24
3" = 0.37	3 1/2" = 0.50	4" = 0.65	6" = 1.46
8" = 2.61	10" = 4.08	12" = 5.87	0 1.40

(Total Drawdown / WCH)

#REF!

Sampler Signature

MICRO-METHODS

PO Box 1410, Ocean Springs, MS 39566-1410 (228) 875-6420 FAX (228) 875-6423

www.micromethodslab.com

Chain of Custody Record Lab ID# MS00021 LELAP ID # 01960 TNI ID # TNI01397

M-M Lab WO#

Print Form

						١		١		ı						
Choctaw Generation Limited Partnership LLLP	imited Partnership	LLLP	Project	Project Manager:	L.			Jim \	Jim Ward	_		Tur	Turn Around Time & Reporting	ne & Re	porting	
Address: 2391 Pensacola Rd.			Purcha	Purchase Order #:	#							UNormal Chornor	Our normal turn around time is 10 working days all	ne is 10 w rder	orking days Phone	_
City: Ackerman State: MS	Zip: 39735		Email	K Shress	104	9	3	2	Christ Cong. D. f	7		Next Day*	requests must be	ust be	Mail	-
Phone: 662-387-5758			Sample	mpler Name Printer	Printe	960	\	,	Testa V	KEN	CATHURAL MA		prior approved.	oved.	Email	
Fax:			Sample	mpler Name Sgrad: A	S.	R	7	1	1	M		QC Level: Level 1	1 Level 2		evel 3	_
の情報をある。			li tage		Lís	t Ana	lyses	Regu	List Analyses Requested	P	SELECTION.	Field	d Testing	SMARKED		8
Project Name:	aJJ a 150		Preservative	tive:	Н			Н	Н			#Q! #Q!	HQI #QI	#QI	Matrix:	Τ
	200		ers	(၁	'əp	oin					8 9	Field Test Field	Field Test Field Test Field Test	ield Test	W = Water	1)
Project #: Semi-,	Semi-Annual		ontain G) or		e, Fluori	лу, Агзе	ocou, Beryll	m, chomb	thedo:	mubned muinel	SS muib 8SS				DW = Drinking Water	
Sample Identification	Sampling Date/Time	Matrix Code	# of C Grab (Сотр	DivoldO				0	Molyi	s위 letoT				S = Solid SO = Soil	,
WW-9	3/23/2 14:35	8	4	Ű	X	X	×	X	X	×	-				se = sealment L = Liquid	_
OW-2	\$/23/21 11:20	8	4	9	X	X	X	X	X	X	X				A = Air	
MW-13	3/24/22 11:10	M	4	₀	^ X	X	X	×	X	X	×				SL = Sludae	
MW-7	3/24/22 15:20	×	4	ŋ	X	×	×	X	X	×	×				,	_
MW-14	13/24/22 13:44	W	4	၅	X	X	×	X	X	X	×					_
Field Blank	3/24/22 13:54	W	4	e e	X	X	X	X	X	X	×				Preservation:	ä
Duplicate	4	W	4	G	$\stackrel{\wedge}{\times}$	X	X	X	X	X	×				1= H2SO4	_
MW-12	3/22 158	8	4	၅	X	X	X	X	X	\times	×				3=NaOH	-
CCR-2		W	4	ß	X	\times	×	X	X	X	×				4=ZnC4H1006	
CCR-3	3/23/22 15:52	Ν	4	ပ	X	X	X	X	X	X	×				5=ZnC4H10O6 &	-
4	3/23/22 1659	Χ	4	G	$\stackrel{\wedge}{\times}$	X	X	X		\times	×				6=HNO3	_
Received on Ice? Y N Thermometer#	,	Cooler #_		Rec	eipt	emp	Receipt Temp Corrected(°C)	ted(°	O						7=Na25203	
Date & Time	By:			Sar	Sample	B	Blank	S	Cooler			**All Temps are	**All Temps are Corrected Values**	*	9=NaHSO4	-
Printed Name	Name	11, 1	Sign	gnature	0.000	100	Company	any	Date	te te	Time	Notes:				T
Relinquished by Kark Shul	tor	MY	K	1			Ecs		7	242	183					
Received by)					5	3		page de la constante de la con				
Relinquished by																_
Received by												·				
Relinquished by																
Received by																
DCN# F316 Rev.#5	<u>.</u>	Physical Address: 6500 Sunplex Drive, Ocean Springs MS 39564	Addre	ss: 650	0 Sun	olex D	rive, O	cean (Spring	s MS 3	9564					1

5
O_{i}
工艺
2
\simeq
2"
*

PO Box 1410, Ocean Springs, MS 39566-1410 (228) 875-6420 FAX (228) 875-6423

(228) 875-6420 FAX (228) 875-6423	www.micromethodslab.com	Company Name:
(228)	WW	c

M-M Lab WO#

Print Form

Company Name:				Project Manager:	Mana	Jor.									H		Γ
Choctaw Generation Limited Partnership LLLP	/ Generation Lir	nited Partnership	LLLP	200	r Mai ia				E	Jim Ward			/		I urn Around I ime & Keporting	Keporting	
Address: 2391 Pensacola	acola Rd.			Purch	Purchase Order #:	ler#:							Normal	normalt	Our normal turn around time is 10 working days	IO working days Phone	,
City: Ackerman	State: MS	Zip: 39735		Email Address	Andre	. 5	0	2) ž	ne rocanine	to		Next Day*	ŧ.	requests must be	1	
Phone: 662-387-5758	m			Samp	er Nan	Sampler Name Printed	9	16	ETHAN	100	CHES	EASTRUME	Other*		prior approved.	Email Email	
Fax:				Satur	e Na	Sample, Name Bigned:	13	M	(n)	11/1-	1		QC Level: Level 1	evel 1	Level 2	Level 3	
					1		st An	alyse	. Red	List Analyses Requested	_	SALERAN		ield T	Field Testing	ATTENDED TO A	
Project Name:	CGLP CCR	CCR		Preservative:	ative:	H	H	\prod	\parallel	H	\prod		#01 #01 #01	F 7	D# ID# ID# D# Cipled Trace Cipled Trace		
Project #:	Semi-	Semi-Annual		iənist	10 te (C)	S(ete Arsenio	muiliynəB ,r	mulmowin mulcium,		'wnpi	3 2S m		בנת ובצו	rieid iest rieid i	= MQ	C 1
	50					TD	Sulfa	позов "г		Cob		uibe:				Water S = Solid	_
Sample Identification	ation	Sampling Date/Time	Matrix		Grab Comp			ump reg			IoM	A listoT				SO = Soil	
CCR-5		3/24/22 17:17	8	4	ပ	X	X	X	X	X	X	X				L = Liquid	_
		, ,														A = Air	
																SL = Sludae	
				П			H										
						1	+										
							-									Preservation:	
							-									1= H2SO4 2= H3PO4	-
						\forall	+			\dashv						3=NaOH	177
																4=ZnC4H1006	، ور
							\vdash									S=ZnC4H1006 & NaOH	ð o
										_						6=HNO3	= 1
Received on Ice? Y N	Thermometer#		Cooler #		۵	eceipt	Tem	Receipt Temp Corrected(°C	cted	Ö						7=Na2S2O3	_
Date & Time	8	By:			S	Sample_		Blank	٥	Cooler			**All Temps	are Corr	**All Temps are Corrected Values**	9=NaHSO4	
The second in the second	Printed Name	Vame		Sign	Signalure			Com	Company	Date	ē.	Time	Notes:				Γ
Relinquished by Received by	Koull Shal	c(ton	X	7				W.	S	3/	3/24/1	18.32					
Relinquished by										\vdash							
Received by																	
Relinquished by																	
Received by																	
DCN# F316 Rev.#5		<u>a</u>	Physical A	Addr	38: 6£	00 Sul	yplex	Drive, (Cean	ddress: 6500 Sunplex Drive, Ocean Springs MS 39564	s MS 3	9564					

Monitor Well:	MW-7	Well Diameter:	4inches
Date:	6/1/2022	Water Column Height:	22.84 ft
Sampling Method:	Pumped	(Measured Well Depth - Static Wa	ater Level)
Measured Well Depth:	56.92f	ft TOC Elevation:	571.76ft
Static Water Level: (Depth to Water)	34.08	(TOC Elevation - Static Water Lev	<u>537.68</u> ft vel)
Maximum Drawdown De (10% of WCH + SWL)	epth <u>36.36</u> f	ft Well Volume: (Water Column Height x Well Cas	14. 85 gal sing Volume Factor)

Start Pump

Date	Volume Purged (L)	Time	Elapsed Time (min)	Water Level (ft)	Turbidity (NTU)	Temp (C)	рН	Conductivity (uS/cm)
6/1/22		10:30						
100		10:38			5.14	20.2	6.62	265.7
		10:42			0.75	19.7	6.47	263.4
		10:46			0.40	19.4	6.55	264.5
		10:50			0.58	19.3	6.40	263.6
		10:54			0.39	19.2	6.47	263.5
			(35.08				
				~				
				WAL D	EPTH			
				5.4 Lin	ers Purgod			
					J			

Sample	Time:
Sample	Analyzed for:

Antimony, Arsenic, Barlum, Beryllium, Cadmium, Chromium, Cobalt, Fluoride, Lead, Lithium, Mercury, Molybdenum, Selenium, Thallium, Radium 226/228

Total Drawdown (ft): Drawdown/Water Column (%): 1.00

4.38 %

Sampler Signature:

If possible, total drawdown will not exceed 0.33 ft.

Well	Stabilization
pH:	0.1 standard units
conductivity:	within 3%
temperature:	0.1 deg. C
turbidity:	<5 NTU or 10%

	Well Casing	Volumes (gal/ft)	
1" = 0.041	1 1/2 " = 0.10	2" = 0.16	2 1/2" = 0.24
3" = 0.37	3 1/2" = 0.50	4" = 0.65	6" = 1.46
8" = 2.61	10" = 4.08	12" = 5.87	

		711	TOAL AGGE	.OOMEITI W		CEVEITI			
Monitor Well:	MW-9		e		Well Diame	ter:	4	inches	
Date:	05/31/	2022			Water Colu	mn Height:	13.09	ft	
Sampling Method:		Pumped				Il Depth - Static Wat		8.	
Measured Well Dep	ath:	21.74	ft		TOC Elevat	ion:	480.04	ft	
					GW Elevati		471.39		
Static Water Level: (Depth to Water)		8.65	."			orr. n - Static Water Leve			
Maximum Drawdov	un Donth	9.96	A		Well Volum			gal	
(10% of WCH + SWL)	wii Deptii	1.76	i.			Height x Well Casi			
		Volume		Elapsed	Water				
	Date	Purged	Time	Time	Level	Turbidity	Temp	pН	Conductivity
		(L)		(min)	(ft)	(NTU)	(C)		(uS/cm)
Start Pump	5/31/22	11-52	11:20	111100	The state of				
otal I amp	7		11:25			0.65	21.6	4.70	1326
			11: 30			0.91	19.8	4.58	1245
								4.53	1292
			11:34			0.98	19.7		
			11:38			0.42	19.7	4.50	1277
			11:42			0.45	19.7	4.55	1288
				- (9.50)			
					1.30	/		-	
				1					
				17	VAL L	PEPTH			
							1		
					5.75 L	iters Rings	19		
						U			
One and T			11:45						
Sample Time:		A . P		- disease O - d - d	Change :	holt Chronida I cad	Lithium Marr	m, Mohadaa	um Salanium
Sample Analyzed f	or:			ryllium, Cadmium	i, Chromium, Co	bait, Fluoride, Lead	, Litrilum, Werct	iry, woiybuen	ium, Selemum,
		Thallium, Rad		_					
Total Drawdown (f	t):		0.8	5					
				6.4	77				
Drawdown/Water C	Column (%):								
5/6-5	7 2								
-	1								
Sampler Signature:									
If possible, total drawde	own will not exceed 0	.33 ft.							
If drawdown exceeds 109	% of water column heig	ht, flow will be	stopped and wel	l allowed to recov	rer.				
Well Stabilization			Well Casing Vo	lumes (gal/ft)					
pH:	0.1 standard units		1" = 0.041	,	1 1/2 " = 0.10		2" = 0.16	:	2 1/2" = 0.24
conductivity:	within 3%		3" = 0.37		3 1/2" = 0.50		4" = 0.65		6" = 1.46
temperature:	0.1 deg. C		8" = 2.61		10" = 4.08		12" = 5.87		
turbidity:	<5 NTU or 10%								

Monitor Well:	MW-12	Well Diameter:	4 inches
Date:	5/3//22	Water Column Height:	11.34 n
Sampling Method:	Pumped	(Measured Well Depth - Static	Water Level)
Measured Well Depth:	19.09	ft TOC Elevation:	474.19ft
Static Water Level:	7.75	ft GW Elevation:	<u>466.44</u> n
(Depth to Water)		(TOC Elevation - Static Water I	_evel)
Maximum Drawdown D	epth <u> </u>	ft Well Volume: (Water Column Height x Well C	7.37 gal Casing Volume Factor)

Date	Volume Purged (L)	Time	Elapsed Time (min)	Water Level (ft)	Turbidity (NTU)	Temp (C)	рН	Conductivity (uS/cm)
5/31/22		12:51						
-, -,		12:59			3.40	21.7	5.98	423,00
		13:03			2.42	20.4	5.97	422.00
		13:06			2.65	19.0	6.12	418.70
		13:09			2.86	18.4	5.97	419.39
		13:13			3.37	18.5	6.13	418.60
		13:17			2.91	18.6	5.95	417.30
		13:20		9.63				
WAIT FOR	WELL							
TO RECH	RGE	15:21		8:36				

Sample	Time:
Sample	Analyzed for:

15:24

Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Cobalt, Fluoride, Lead, Lithium, Mercury, Molybdenum, Selenium,

Thallium, Radium 226/228

Total Drawdown (ft):

0.61

Drawdown/Water Column (%):

5.38%

Sampler Signature:

If possible, total drawdown will not exceed 0.33 ft.

Well Stabilization			
pH: 0.1 standard units			
conductivity: within 3%			
temperature: 0.1 deg. C			
turbidity: <5 NTU or 10%			

Well Casing Volumes (gal/ft)					
1" = 0.041	1 1/2 " = 0.10	2" = 0.16	2 1/2" = 0.24		
3" = 0.37	3 1/2" = 0.50	4" = 0.65	6" = 1.46		
8" = 2.61	10" = 4.08	12" = 5.87			

Monitor Well:	MW-13	Well Diameter:	4inche
Date:	1/22	Water Column Height:	44.92 A
Sampling Method:	Pumped	(Measured Well Depth - Static	Water Level)
Measured Well Depth:	106 ft	TOC Elevation:	584.48ft
Static Water Level: (Depth to Water)	61.08 ft	GW Elevation: (TOC Elevation - Static Water I	
Maximum Drawdown Depth (10% of WCH + SWL)	<u>65.57</u> n	Well Volume: (Water Column Height x Well C	29.20 gal casing Volume Factor)

Start	Pump	١

Date	Volume Purged (L)	Time	Elapsed Time (min)	Water Level (ft)	Turbidity (NTU)	Temp (C)	рН	Conductivity (uS/cm)
6/1/22		8:32						
, ,		8:40			1.08	21.9	6.84	260.3
		8:44			0.49	21.7	6.85	247.3
		8 48			0.33	21.6	6.76	243.5
		8:52			0.61	21.5	6.81	241.7
		-		62.03	/ \			
				62.03				
			,					
			F	INAL	DEPTH			
				1. 400	-	1		
				4.80 L	irens Ruge	بط		

		0	•	1
ample Time:	,	0	b (

Sample Analyzed for:

Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Cobalt, Fluoride, Lead, Lithium, Mercury, Molybdenum, Selenium,

Thallium, Radium 226/228

Total Drawdown (%):
Drawdown/Water Column (%):

0.95

2.11%

Sampler Signature:

If possible, total drawdown will not exceed 0.33 ft.

Well Stabilization				
pH: 0.1 standard units				
conductivity: within 3%				
temperature:	0.1 deg. C			
turbidity: <5 NTU or 10%				

	Well Casing	Volumes (gal/ft)	
1" = 0.041	1 1/2 " = 0.10	2" = 0.16	2 1/2" = 0.24
3" = 0.37	3 1/2" = 0.50	4" = 0.65	6" = 1.46
8" = 2.61	10" = 4.08	12" = 5.87	

Monitor Well:	MW-14	v	Vell Diameter:	4inches
Date:	6/1/22			32.01 ft
Sampling Method:	Pumped	(N	Measured Well Depth - Static Wa	iter Level)
Measured Well Depth	: 60.97	ft T	OC Elevation ⁽¹⁾ :	593.84ft
Static Water Level: (Depth to Water)	28.96	(Т	iW Elevation: FOC Elevation - Static Water Lev	<u>564,38</u> ft
Maximum Drawdown (10% of WCH + SWL)	Depth <u>32.16</u>		Vell Volume: Vater Column Height x Well Cas	20.8 gal sing Volume Factor)

Start	Pump
Juan	1 UIIIP

Date	Volume Purged (L)	Time	Elapsed Time (min)	Water Level (ft)	Turbidity (NTU)	Temp (C)	рН	Conductivity (uS/cm)
6/1/22		11:22				7 19 1		
		11:30			0.53	21.3	5.42	29.0
		11:34			0.55	21.4	5.03	127.4
		11:38			0.76	21.4	4.97	127.3
		11:42			0.73	21.3	4.92	127.3
		11:46			0.63	21.0	4,87	127.2
				30.06				
					EPTH			
			P	WAL D	2177			
				5.1 Lia	is Riged			

Sample	Time:
Sample	Analyzed for:

Sampler Signature.

11:48

Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Cobalt, Fluoride, Lead, Lithium, Mercury, Molybdenum, Selenium,

Thallium, Radium 226/228

Total Drawdown (%):
Drawdown/Water Column (%):

10

Drawdown/water Column (%

3,43 %

FIELD BLANK TAKEN AT THIS WELL. 11:27

If possible, total drawdown will not exceed 0.33 ft.

Well Stabilization			
pH:	0.1 standard units		
conductivity: within 3%			
temperature:	0.1 deg. C		
turbidity:	<5 NTU or 10%		

	Well Casing	Volumes (gal/ft)	
1" = 0.041	1 1/2 " = 0.10	2" = 0.16	2 1/2" = 0.24
3" = 0.37	3 1/2" = 0.50	4" = 0.65	6" = 1.46
8" = 2.61	10" = 4.08	12" = 5.87	

Monitor Well:	OW-2	Well Diameter:	4 inches
Date: _	5/31/22	Water Column Height:	16.37 ft
Sampling Method:	Pumped	(Measured Well Depth - Static W	ater Level)
Measured Well Dept	h: 27.05	ft TOC Elevation:	489.40ft
Static Water Level: (Depth to Water)	10.68	(TOC Elevation - Static Water Le	
Maximum Drawdowi (10% of WCH + SWL)	n Depth 12.32	ft Well Volume: (Water Column Height x Well Ca	10.64 gal sing Volume Factor)

Start	Pump

	Volume		Elapsed	Water				
Date	Purged (L)	Time	Time (min)	Level (ft)	Turbidity (NTU)	Temp (C)	pН	Conductivity (uS/cm)
5/31/22		13:35		10000				
7		13:45			0.53	22.2		570.30
		13:49			0.42	21.1	5.66	566.8
		13:53			0.49	21.1	5.73	567.10
		13:53 13:57			0.49	21.1	5.68	570.30 566.80 567.10 566.80
			-	11.88	1)			
	-			111.90				
			F	WAL	DEPTH			
)
				40 1:	res Purged			
					+			
-					+			

Sample	Time:
Sample	Analyzed for:

14:00

Sample Analyzed for:

Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Cobalt, Fluoride, Lead, Lithium, Mercury, Molybdenum, Selenium,

Thallium, Radium 226/228

Total Drawdown (ft):

Drawdown/Water Column (%):

12

7379

Sampler Signature:

If possible, total drawdown will not exceed 0.33 ft.

Well Stabilization			
pH:	0.1 standard units		
conductivity:	within 3%		
temperature: 0.1 deg. C			
turbidity:	<5 NTU or 10%		

	Well Casing	Volumes (gal/ft)	
1" = 0.041	1 1/2 " = 0.10	2" = 0.16	2 1/2" = 0.24
3" = 0.37	3 1/2" = 0.50	4" = 0.65	6" = 1.46
8" = 2.61	10" = 4.08	12" = 5.87	

Monitor Well:	CCR-2	Well Diameter:	4inche
Date:	31/22	Water Column Height:	35.24 n
Sampling Method:	Pumped	(Measured Well Depth - Static W	/ater Level)
Measured Well Depth:	84.5 ft	TOC Elevation:	542.50 ft
Static Water Level:	49.26ft	GW Elevation:	493.24ft
(Depth to Water)		(TOC Elevation - Static Water Le	evel)
Maximum Drawdown Depth	_ <u>52.78</u> ft	Well Volume:	22.91 gal
(10% of WCH + SWL)		(Water Column Height x Well Ca	sing Volume Factor)

Start	Pump	

(10% of WCH + SWL)

Date	Volume Purged (L)	Time	Elapsed Time (min)	Water Level (ft)	Turbidity (NTU)	Temp (C)	рН	Conductivity (uS/cm)
5/31/22		15:55						
- /		16:02			0.18	21.0	7.22	224.5
		16 06			0.17	20.8	6.74	222.
	-	16:10			0.03	20.7	6.70	221.0
		16.18			0.27	20.7	6.73	220.7
		16.18		-	0.10	2011	6.13	2413
				51.27	()			
			/					
			FI	YAL D	FOTH			
			1.77	ハレレ	01111			
				5.5 4	Ters			

Sample Time:	
Sample Analyzed for:	Antimony, A

16:20 Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Cobalt, Fluoride, Lead, Lithium, Mercury, Molybdenum, Selenium,

Thallium, Radium 226/228

Total Drawdown (ft):

2.01

Drawdown/Water column (%):

5.70 %

Sampler Signature:

If possible, total drawdown will not exceed 0.33 ft.

Well Stabilization			
pH: 0.1 standard units			
conductivity:	within 3%		
temperature: 0.1 deg. C			
turbidity:	<5 NTU or 10%		

Well Casing Volumes (gal/ft)					
1" = 0.041	1 1/2 " = 0.10	2" = 0.16	2 1/2" = 0.24		
3" = 0.37	3 1/2" = 0.50	4" = 0.65	6" = 1.46		
8" = 2.61	10" = 4.08	12" = 5.87			

Monitor Well:	CCR-3	Well Diameter:	4inche
Date: 05	/31/22	Water Column Height	
Sampling Method:	Pumped	(Measured Well Depth - Stat	ic Water Level)
Measured Well Depth:	53 ft	TOC Elevation:	504.78 ft
Static Water Level:	26.64 ft	GW Elevation:	478.74 ft
(Depth to Water)	201 74	(TOC Elevation - Static Water	
Maximum Drawdown Depth	28.74 ft	Well Volume:	_ <u>17,52_gal</u>
(10% of WCH + SWL)		(Water Column Height x Wei	ll Casing Volume Factor)

Start Pump

Date	Volume Purged (L)	Time	Elapsed Time (min)	Water Level (ft)		Temp (C)	рH	Conductivity (uS/cm)
5/31/22		9:50				1. 5		
7/		9.57			6.85	20.6	6.12	531.6
		10:00			3.69	20.1	6.20	515.1
		10:03			2.85	19.9	6.15	511,2
		10:06			2.50	20.0	6.18	501.6
				-				
			(27.5	4			
			/					
			19	WAL	DEPTH			
				5,01	Lites Prograd			
				-				

Sample Time:	
Sample Analyzed for:	Antimor

Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Cobalt, Fluoride, Lead, Lithium, Mercury, Molybdenum, Selenium,

Thallium, Radium 226/228

Total Drawdown (ft)

1.50

Drawdown/Water Column (%):

5.56 %

Sampler Signature:

If possible, total drawdown will not exceed 0.33 ft.

Well Stabilization				
pH: 0.1 standard units				
conductivity: within 3%				
temperature: 0.1 deg. C				
turbidity: <5 NTU or 10%				

	Well Casing	Volumes (gal/ft)	
1" = 0.041	1 1/2 * = 0.10	2" = 0.16	2 1/2" = 0.24
3" = 0.37	3 1/2" = 0.50	4" = 0.65	6" = 1.46
8" = 2.61	10" = 4.08	12" = 5.87	

Monitor Well:	CCR-4	Well Diameter:	4inches
Date:	5/31/22	Water Column Height:	27.47 _{ft}
Sampling Method:	Pumped	(Measured Well Depth - Static W	ater Level)
Measured Well Depth:		ft TOC Elevation:	505.68ft
Static Water Level: (Depth to Water)	25.53	(TOC Elevation - Static Water Le	480.15 ft
Maximum Drawdown D (10% of WCH + SWL)	epth <u>28,28</u>	ft Well Volume: (Water Column Height x Well Ca	17.86 gal sing Volume Factor)

Date	Volume Purged (L)	Time	Elapsed Time (min)	Water Level (ft)	Turbidity (NTU)	Temp (C)	pН	Conductivity (uS/cm)
5/31/22		14:21						
//		14:28			32.5	23.0	6.52	374
		14:31			29.4	2018	6.66	356.9
		14:34			25.6	20.9	6.50	352,2
		14:37			41.4	20.9	6.56	347.3
		14:40			30.9	211	6.43	348.7
		14:43			18.15	21:0	6.49	348.5
		14.46			21.80	211	6.50	348.3
		14:49			22,70	21.1	6.50	348.1
						1000000	11/1	
			/		>			
				27.02				
			/					
			P	NAL D	EPTH			
				-				
				1				
				6.0 Lin	ers fuged			
				0.0	1.0			

Sample	Time:
Sample	Analyzed for:

14:53
Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Cobalt, Fluoride, Lead, Lithium, Mercury, Molybdenum, Selenium,

Thallium, Radium 226/228

Total Drawdown (ft)

114

Drawdown/Water Column (%):

5,42 %

Sampler Signature

If possible, total drawdown will not exceed 0.33 ft.

Well Stabilization			
0.1 standard units			
within 3%			
0.1 deg. C			
<5 NTU or 10%			

Well Casing	Volumes (gal/ft)	
1 1/2 " = 0.10	2" = 0.16	2 1/2" = 0.24
3 1/2" = 0.50	4" = 0.65	6" = 1.46
10" = 4.08	12" = 5.87	
	1 1/2 " = 0.10 3 1/2" = 0.50	3 1/2" = 0.50 4" = 0.65

Monitor Well:	CR-5	Well Diameter:	4inche
Date: 6/1	/22	Water Column Height:	26.82 ft
Sampling Method:	Pumped	(Measured Well Depth - Static \	Water Level)
Measured Well Depth:	34.55 ft	TOC Elevation:	470.46ft
Static Water Level: (Depth to Water)	7.73 ft	GW Elevation: (TOC Elevation - Static Water L	462.73 ft
Maximum Drawdown Depth (10% of WCH + SWL)	10.41 ft	Well Volume: (Water Column Height x Well C	17. 43 gal asing Volume Factor)

Start	Pump

Date	Volume Purged (L)	Time	Elapsed Time (min)	Water Level (ft)	Turbidity (NTU)	Temp (C)	рН	Conductivity (uS/cm)
6/1/22		9:30						
		9 40			317	20.0	6.64	755.9
		9:44			386	19.9	6.63	721.0
		9:48			360	19.8	6.63	720.9
		9:52			367	19.7	6.64	722.2
				0117	()			
				8.46				
							-	
			FI	VAL D	EPTH			
	-		1. 3.					
				140 1	0		-	
	-			4.5 L	was Purged	4		
	-	-						
					-			
	-				8			
	-		_					
					1			
	-							

Sample	Time:	
Sample	Analyzed	for:

9:52
Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Cobalt, Fluoride, Lead, Lithium, Mercury, Molybdenum, Selenium,

Thallium, Radium 226/228

Total Drawdown (ft): Drawdown/Water Column (%):

2.72%

Sampler Signature:

If possible, total drawdown will not exceed 0.33 ft.

Well Stabilization			
pH:	0.1 standard units		
conductivity:	within 3%		
temperature: 0.1 deg. C			
turbidity:	<5 NTU or 10%		

	Well Casing	Volumes (gal/ft)	
1" = 0.041	1 1/2 " = 0.10	2" = 0.16	2 1/2" = 0.24
3" = 0.37	3 1/2" = 0.50	4" = 0.65	6" = 1.46
8" = 2.61	10" = 4.08	12" = 5.87	

Monitor Well:	MW-7	Well Diameter:	4inches
Date: $\underline{\mathcal{I}}$	-13-22	Water Column Height:	22.34 ft
Sampling Method:	Pumped	(Measured Well Depth - Static W	/ater Level)
Measured Well Depth:	56.92 ft	TOC Elevation ⁽¹⁾ :	571.76ft
Static Water Level: (Depth to Water)	34.58 ft	GW Elevation: (TOC Elevation - Static Water Le	ALL CO
Maximum Drawdown D	epth <u>36.8 </u> ft	Well Volume:	14.52 gal

(10% of WCH + SWL)

Start	Pump

Date	Volume Purged (L)	Time	Elapsed Time (min)	Water Level (ft)	Turbidity (NTU)	Temp (C)	рН	Conductivity (uS/cm)
9-13-22		11:30					HIME	
11.	201	11:30			0.35	19.2	6.15	291.6
	4	11:39			0.31	18.2	6.34	287, 8 286,9 288,8
	Bark	11241		· ·	0.34	18.0	6.26	286.9
	5.0 L	11:44		35.74	0.07	18:0	6.30	288.8
**								

(Water Column Height x Well Casing Volume Factor)

Sample	Time:	
Sample	Analyzed	for:

Appendix III (Boron, Calcium, Chloride, Fluoride, Sulfate, & TDS). pH measured in the field. Appendix IV (Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Cobalt, Fluoride, Lead, Lithium, Molybdenum, Selenium, & Radium 226/228).

Total Drawdown (ft):

(SWL - Final Depth)
(Co. 05 (925)
(Total Drawdown / WCH)

Drawdown/Water Column (%):

Sampler Signature:

If possible, total drawdown will not exceed 0.33 ft.

Well	Stabilization
pH:	0.1 standard units
conductivity:	within 3%
temperature:	0.1 deg. C
turbidity:	<5 NTU or 10%

	Well Casing	Volumes (gal/ft)	
1" = 0.041	1 1/2 " = 0.10	2" = 0.16	2 1/2" = 0.24
3" = 0.37	3 1/2" = 0.50	4" = 0.65	6" = 1.46
8" = 2.61	10" = 4.08	12" = 5.87	

120	/-14	Well Diameter:	4	inches
Date: 9-13-		Water Column Height: (Measured Well Depth - Static Water W	30.5]	_ft
Sampling Method: Measured Well Depth:	Pumped 60.97 ft	TOC Elevation ⁽¹⁾ :		__ ft
Static Water Level: (Depth to Water)	30.46 ft	GW Elevation: (TOC Elevation - Static Water Lev	563.38 vel)	ft
Maximum Drawdown Depth (10% of WCH + SWL)	<u>33.51</u> ft	Well Volume: (Water Column Height x Well Cas	19.83 ing Volume Fac	gal ctor)

Sta	rt	Pu	m	n

Date	Volume Purged (L)	Time	Elapsed Time (min)	Water Level (ft)	Turbidity (NTU)	Temp (C)	рН	Conductivity (uS/cm)
9-13-22		10:36					-419	
	2.0	10:44			1.50	222	497	148.8
1		10:47			0.64	21.7	4.80	135.0
	V	10:50		31.53	0.64	21.5	4.80	148,8 135,0 133,9 133,5
	4.0 L	10:53		31.27	0.66	21,4	4.80	133.5

Sample	Time:	
Sample	Analyzed	for:

10:56

Appendix III (Boron, Calcium, Chloride, Fluoride, Sulfate, & TDS). pH measured in the field. Appendix IV (Antimony, Arsenic,

Barium, Beryllium, Cadmium, Chromium, Cobalt, Fluoride, Lead, Lithium, Molybdenum, Selenium, & Radium 226/228).

Total Drawdowp (ft): Drawdown/Water Column (%):

(SWL - Final Depth) (Total Drawdown / WCH)

FIELD BLANK @ 10:5|

If possible, total drawdown will not exceed 0.33 ft.

If drawdown exceeds 10% of water column height, flow will be stopped and well allowed to recover.

Well	Stabilization
pH:	0.1 standard units
conductivity:	within 3%
temperature:	0.1 deg. C
turbidity:	<5 NTU or 10%

	Well Casing	Volumes (gal/ft)	
1" = 0.041	1 1/2 " = 0.10	2" = 0.16	2 1/2" = 0.24
3" = 0.37	3 1/2" = 0.50	4" = 0.65	6" = 1.46
8" = 2.61	10" = 4.08	12" = 5.87	

Monitor Well:	MW-1	3	-		Well Diame	eter:	4	inches
Date:	9/12/2	22	=			ı mn Height: ell Depth - Static V	643,36) _{ft}
Sampling Method: Measured Well Dep		Pumped 106	- ft		TOC Elevat		,	ft
Static Water Level: (Depth to Water)		62.70	_ft		GW Elevati		52/78	_ft
Maximum Drawdov (10% of WCH + SWL)	wn Depth	67.03	_ft		Well Volum (Water Column	1e: n Height x Well Ca	28.15 asing Volume Fac	_gal ctor)
		Volume		Elapsed	Water		T	T

Start Pum	n

Date	Purged (L)	Time	Flapsed Time (min)	Level (ft)	Turbidity (NTU)	Temp (C)	рН	Conductivity (uS/cm)
9/12		11.08						
1	4.0	11:31			2.19	22.7	6.69	365.3
		11:35			2,22	21.2	6.68	262,8
		11:39			2,00	21,3	6.53	245.8
		11:43			1,47	2,2	651	245.5
	6.0	11:47			1.31	21.	6.46	24,7
						7		
		i						
	1	-						
	1							
	_							
	-							
	+							
	-						-	
	-							

Sample	Time:	
Sample	Analyzed	fc

Appendix III (Boron, Calcium, Chloride, Fluoride, Sulfate, & TDS). pH measured in the field. Appendix IV (Antimony, Arsenic,

Barium, Beryllium, Cadmium, Chromium, Cobalt, Fluoride, Lead, Lithium, Molybdenum, Selenium, & Radium 226/228).

Total Drawdown (ft):
Drawdown/Water Column (%):

(SWL - Final Depth)
(Total Drawdown / WCH)

Sampler Signature:

If possible, total drawdown will not exceed 0.33 ft.

Well Stabilization			
pH: 0.1 standard units			
conductivity: within 3%			
temperature: 0.1 deg. C			
turbidity: <5 NTU or 10%			

	Well Casing	Volumes (gal/ft)	
1" = 0.041	1 1/2 " = 0.10	2" = 0.16	2 1/2" = 0.24
3" = 0.37	3 1/2" = 0.50	4" = 0.65	6" = 1.46
8" = 2.61	10" = 4.08	12" = 5.87	

Monitor Well: Co	CR-5	Well Diameter:	4 inches
Date: 9-13-	22	Water Column Height:	27.24 _{ft}
Sampling Method:	Pumped	(Measured Well Depth - Static W	ater Level)
Measured Well Depth:	34.55 ft	TOC Elevation ⁽¹⁾ :	470.46 ft
Static Water Level: (Depth to Water)	7.31 ft	GW Elevation: (TOC Elevation - Static Water Le	463.15 ft
Maximum Drawdown Depth (10% of WCH + SWL)	10.05 ft	Well Volume: (Water Column Height x Well Ca	gal sing Volume Factor)

Start	Pump

Date	Volume Purged (L)	Time	Elapsed Time (min)	Water Level (ft)	Turbidity (NTU)	Temp (C)	рН	Conductivity (uS/cm)
9-13-22		9:35			THE REAL PROPERTY.		100	
	2.0	9:39			119	19.8	6.57	715.4
		9.41	2		131	19.2	6.62	697.4
		9:44			181	19.1	6.55	681.3
	V	9:47			168	19.5	6.55	680.1 676.0
	5.0	9:50	<u> </u>	7.99	160	19.6	6.56	6 76.0
			N====					
			ü					
-	-							
	-	-						

Sample	Time:
Sample	Analyzed for:

Appendix III (Boron, Calcium, Chloride, Fluoride, Sulfate, & TDS). pH measured in the field. Appendix IV (Antimony, Arsenic,

Barium, Beryllium, Cadmium, Chromium, Cobalt, Fluoride, Lead, Lithium, Molybdenum, Selenium, & Radium 226/228).

Total Drawdown (ft):
Drawdown/Water Column (%):

-0.68 0.025 (SWL - Final Depth) (Total Drawdown / WCH)

Sampler Signature:

If possible, total drawdown will not exceed 0.33 ft.

Well Stabilization		
pH: 0.1 standard units		
conductivity:	within 3%	
temperature: 0.1 deg. C		
turbidity: <5 NTU or 10		

	Well Casing	Volumes (gal/ft)	
1" = 0.041	1 1/2 " = 0.10	2" = 0.16	2 1/2" = 0.24
3" = 0.37	3 1/2" = 0.50	4" = 0.65	6" = 1.46
8" = 2.61	10" = 4.08	12" = 5.87	

Monitor Well:	DW-2	Well Diameter:	4inches
Date: 9-12	2-22	Water Column Height:	16.08 ft
Sampling Method:	Pumped	(Measured Well Depth - Static	Water Level)
Measured Well Depth:	27.05 ft	TOC Elevation ⁽¹⁾ :	489.40ft
Static Water Level: (Depth to Water)	10.97 ft	GW Elevation: (TOC Elevation - Static Water	<u>+78.43</u> ft Level)
Maximum Drawdown Depth (10% of WCH + SWL)	<u>12.58</u> ft	Well Volume: (Water Column Height x Well C	20.45 gal Casing Volume Factor)

Start	Pump
Otalic	· willb

	Volume		Elapsed	Water				
Date	Purged (L)	Time	Time (min)	Level (ft)	Turbidity (NTU)	Temp (C)	pН	Conductivity (uS/cm)
9-12-22	80 11 1- 11	16:45				No. of Street		
	1.0 L	16:48			0.62	18.6	5.44	587.0
	V	16:51			0.80	18.5	5.42	589.3
	3.5 L	16:54		11.84	0.80	18.5	5.42 5.40	587.0 589.3 590.3
		-						
								1
-								
								74

Sample Time:	16:58
Sample Analyzed for:	Appendix III (Boron, Calcium, Chloride, Fluoride, Sulfate, & TDS

Appendix III (Boron, Calcium, Chloride, Fluoride, Sulfate, & TDS). pH measured in the field. Appendix IV (Antimony, Arsenic,

Barium, Beryllium, Cadmium, Chromium, Cobalt, Fluoride, Lead, Lithium, Molybdenum, Selenium, & Radium 226/228).

Total Drawdown (ft):

Drawdown (water Column (w):

(SWL - Final Depth)

(Total Drawdown / WCH)

Sampler Signature:

If possible, total drawdown will not exceed 0.33 ft.

If drawdown exceeds 10% of water column height, flow will be stopped and well allowed to recover.

Well Stabilization				
pH:	0.1 standard units			
conductivity:	within 3%			
temperature:	0.1 deg. C			
turbidity:	<5 NTU or 10%			

	Well Casing	Volumes (gal/ft)	
1" = 0.041	1 1/2 " = 0.10	2" = 0.16	2 1/2" = 0.24
3" = 0.37	3 1/2" = 0.50	4" = 0.65	6" = 1.46
8" = 2.61	10" = 4.08	12" = 5.87	

#REF!

Monitor Well:	CCR-2	Well Diameter:	4inches
Date:	9-12-22		0.1.05

Water Column Height: (Measured Well Depth - Static Water Level) Sampling Method: Pumped

Measured Well Depth: 84.5 ft **50.25** ft TOC Elevation⁽¹⁾: 542.50 ft **Static Water Level: GW Elevation:**

(Depth to Water) (TOC Elevation - Static Water 53.675 ft **Maximum Drawdown Depth** Well Volume:

(10% of WCH + SWL) (Water Column Height x Well Casing Volume Factor)

Start	Pump

Date:

Date	Volume Purged (L)	Time	Elapsed Time (min)	Water Level (ft)	Turbidity (NTU)	Temp (C)	рН	Conductivity (uS/cm)
9-12-22		15:17						
	2.0 L	15:31			0.32	19.7	6.35	2219
	1	15:34			0.10	19.6	6.37	223.9
	3.5 L	15137		51.56	0.11	19.6	6.37	224,6
-								
				-				
						-		
	(

ample Time:	5	•	3	9
impie i ime:	-	_	~	

Sample Analyzed for: Appendix III (Boron, Calcium, Chloride, Fluoride, Sulfate, & TDS). pH measured in the field. Appendix IV (Antimony, Arsenic,

Barium, Beryllium, Cadmium, Chromium, Cobalt, Fluoride, Lead, Lithium, Molybdenum, Selenium, & Radium 226/228).

Total Drawdown (ft):// (SWL - Final Depth) Drawdown/Water Column (%): (Total Drawdown / WCH)

Sampler Signature:

If possible, total drawdown will not exceed 0.33 ft.

If drawdown exceeds 10% of water column height, flow will be stopped and well allowed to recover.

Well	Stabilization		Well Casing	Volumes (gal/ft)	
oH:	0.1 standard units	1" = 0.041	1 1/2 " = 0.10	2" = 0.16	2 1/2" =
onductivity:	within 3%	3" = 0.37	3 1/2" = 0.50	4" = 0.65	6" = 1.4
mperature:	0.1 deg. C	8" = 2.61	10" = 4.08	12" = 5.87	
turbidity:	<5 NTU or 10%				

#REF!

Monitor Well: C	CR-3	Well Diameter:	4inches
Date: 9-12	2-22	Water Column Height:	26.03 ft
Sampling Method:	Pumped	(Measured Well Depth - Static \	Water Level)
Measured Well Depth:	53 ft	TOC Elevation ⁽¹⁾ :	504.78 ft
Static Water Level:	26.97 ft	GW Elevation:	4-77.81 ft
(Depth to Water)),	(TOC Elevation - Static Water L	.evel)
Maximum Drawdown Depth	29.573 ft	Well Volume:	<u>/6.92</u> gal
(10% of WCH + SWL)		(Water Column Height x Well C	asing Volume Factor)

Start	Pump

Date	Volume Purged (L)	Time	Elapsed Time (min)	Water Level (ft)	Turbidity (NTU)	Temp (C)	рН	Conductivity (uS/cm)
9-12-22		14:20						NAME OF THE OWNER.
	2.0 L	14:24			5.17	20.8	5.87	519.7
		14:27			4.46	19,1	5.94	511.6
		14:30			38.5	18:9	5.89	505.9
		14:33			31.3	19.0	6.03	505.0
		14:36			23.3	19.0	6.04	
	V	14:39			26.1 25.3	18.9	6.02	503.9
	7.0L	14:41		29.46	25.3	19.3	6.02	501.7
		-						
			T					

Sample Time:	14:45
Sample Analyzed for:	Appendix III (Boron, Calcium, Chloride, Fluoride, Sulfate, & TDS). pH measured in the field. Appendix IV (Antimony, Arsenic,
	Barium, Beryllium, Cadmium, Chromium, Cobalt, Fluoride, Lead, Lithium, Molybdenum, Selenium, & Radium 226/228).
Total Drawdown (ft):	(SWL - Final Depth)
Drawdon Militar Column (9/)	(Total Deputerum (MCH)

Sampler Signature:

If possible, total drawdown will not exceed 0.33 ft.

Well Stabilization				
pH:	0.1 standard units			
conductivity:	within 3%			
temperature:	0.1 deg. C			
turbidity: <5 NTU or 10%				

	Well Casing	Volumes (gal/ft)	
1" = 0.041	1 1/2 " = 0.10	2" = 0.16	2 1/2" = 0.24
3" = 0.37	3 1/2" = 0.50	4" = 0.65	6" = 1.46
8" = 2.61	10" = 4.08	12" = 5.87	

Monitor Well:	MW-9	Well Diameter:	4 inches
Date: 9	-12-22	Water Column Height: (Measured Well Depth - Static W	13.75 ft
Sampling Method: Measured Well Depth:	Pumped 21.74 ft	TOC Elevation ⁽¹⁾ :	480.04 ft
Static Water Level: (Depth to Water)	7.99 ft	GW Elevation: (TOC Elevation - Static Water Le	472.05ft
Maximum Drawdown Dept (10% of WCH + SWL)	th <u>9.365</u> ft	Well Volume: (Water Column Height x Well Ca:	8.94 gal

	Volume		Elapsed	Water				
Date	Purged (L)	Time	Time (min)	Level (ft)	Turbidity (NTU)	Temp (C)	рН	Conductivity (uS/cm)
9-12-22		13:36						
	2.0	13:47			0.47	22.9	4.85	1251
	1	13:50			0.27	22.1	4.44	1260
		13:53			0.20	ZZ.O	4.44 4.33 4.27	1264
	V	13:56			0.20	21.9	4.27	1273
	5.0 L	15:59		8.95	0.20	21.9	4.31	1269
		•		300				
							7	
							V	

Sample Time:	14:00		
Sample Analyzed for:	Appendix III (Boron, Calcium, Chloride, Fluorid		

Appendix III (Boron, Calcium, Chloride, Fluoride, Sulfate, & TDS). pH measured in the field. Appendix IV (Antimony, Arsenic,

2 1/2" = 0.24 6" = 1.46

Barium, Beryllium, Cadmium, Chromium, Cobalt, Fluoride, Lead, Lithium, Molybdenum, Selenium, & Radium 226/228).

Total Drawdown (ft): Drawdown/Water Column (%): - 0.96 (SWL - Final Depth)
0.0698 (Total Drawdown / WCH)

Sampler Signature:

If possible, total drawdown will not exceed 0.33 ft.

Well Stabilization		Well Casing Volumes	(gal/ft)	
pH:	0.1 standard units	1" = 0.041	1 1/2 " = 0.10	2" = 0.16
conductivity:	within 3%	3" = 0.37	3 1/2" = 0.50	4" = 0.65
temperature:	0.1 deg. C	8" = 2.61	10" = 4.08	12" = 5.87
turbidity:	<5 NTU or 10%	4.		

Monitor Well:	CCR-4	Well Diameter:4inches
Date: 9	-12-2022	Water Column Height: 27.44 ft
Sampling Method:	Pumped	(Measured Well Depth - Static Water Level)
Measured Well Depth:	53 ft	TOC Elevation⁽¹⁾: 505.68 ft
Static Water Level: (Depth to Water)	25.56 ft	GW Elevation: 480.12 ft (TOC Elevation - Static Water Level)
Maximum Drawdown De (10% of WCH + SWL)	pth <u>28:304</u> ft	Well Volume: 17.836 gal (Water Column Height x Well Casing Volume Factor)

Start	Pump	

	Volume		Elapsed	Water				
Date 9/12/22	Purged (L)	Time	Time (min)	Level (ft)	Turbidity (NTU)	Temp (C)	pН	Conductivity (uS/cm)
BODDOO		12:24						
	20	1000			4200	234	7.25	3752
	i				30.6	19.6	7.31 -	367.8
		12:32			61.9	19.4	6.64	371.3
		12:35			47.7	19.2	6.32	364.0
		12:38			65.4	19.0	6.50	363.0
		12:41			69.8	19.0	6.32	363.0
		12:44			40.1	19.4	6.40	362.7 362.5
		12:47			33.4	20.1	6.27	362.5
		12:50			112	21.6	6.37	362.4
		12:53			67.0	19,1	6.32	363,3
	7.0	12:56			34.9	21.7	6.38	3647
				27.88				

Sample Time:	13:00
Sample Analyzed for:	Appendix III (Boron, Calciu

Appendix III (Boron, Calcium, Chloride, Fluoride, Sulfate, & TDS). pH measured in the field. Appendix IV (Antimony, Arsenic,

Barium, Beryllium, Cadmium, Chromium, Cobalt, Fluoride, Lead, Lithium, Molybdenum, Selenium, & Radium 226/228).

2.32 (SWL - Final Depth) Total Drawdown (ft): Drawdown/Water Column (%): (Total Drawdown / WCH)

Sampler Signature

If possible, total drawdown will not exceed 0.33 ft.

Well Stabilization			
pH:	0.1 standard units		
conductivity:	within 3%		
temperature:	0.1 deg. C		
turbidity:	<5 NTU or 10%		

Well Casing Volumes (gal/ft)					
1" = 0.041	1 1/2 " = 0.10	2" = 0.16	2 1/2" = 0.24		
3" = 0.37	3 1/2" = 0.50	4" = 0.65	6" = 1.46		
8" = 2.61	10" = 4.08	12" = 5.87			

Monitor Well:	MW-12	Well Diameter:	4	inches
Date: 9-	-12-22	Water Column Height:	14.41	_ft
Sampling Method:	Pumped	(Measured Well Depth - Static W	ater Level)	
Measured Well Depth:	ft	TOC Elevation ⁽¹⁾ :	474.19	_ft
Static Water Level: (Depth to Water)	4.68 ft	GW Elevation: (TOC Elevation - Static Water Le		-
Maximum Drawdown Depth (10% of WCH + SWL)	6.12'ft	Well Volume: (Water Column Height x Well Ca	9.3665 sing Volume Fac	

Start	Pump

Date	Volume Purged (L)	Time	Elapsed Time (min)	Water Level (ft)	Turbidity (NTU)	Temp (C)	рН	Conductivity (uS/cm)
9-12-22		16:10						
	1.01	16:15			1.99	21.8	5.74	404.4
	1	16:18			1,08	21.1	5.77	407.7
	Ale	16:21			0.41	21.1	5.72	407.3
	400	16:24		1.000	1.08	21.0	5.83	407.3
	4.0L	16:21		6.08	1.14	21.9	5.75	407.9
				<u>*</u>				

Sample	Time:	
Sample	Analyzed for:	

Appendix III (Boron, Calcium, Chloride, Fluoride, Sulfate, & TDS). pH measured in the field. Appendix IV (Antimony, Arsenic,

Barium, Beryllium, Cadmium, Chromium, Cobalt, Fluoride, Lead, Lithium, Molybdenum, Selenium, & Radium 226/228).

Total Drawdown (ft): -1.40
Drawdown/Water Column (%): -0.09

(SWL - Final Depth)
(7 total Drawdown / WCH)

Sampler Signature

If possible, total drawdown will not exceed 0.33 ft.

Well	Stabilization
pH:	0.1 standard units
conductivity:	within 3%
temperature:	0.1 deg. C
turbidity:	<5 NTU or 10%

Well Casing Volumes (gal/ft)											
1" = 0.041	1 1/2 " = 0.10	2" = 0.16	2 1/2" = 0.24								
3" = 0.37	3 1/2" = 0.50	4" = 0.65	6" = 1.46								
8" = 2.61	10" = 4.08	12" = 5.87									

APPENDIX D

2022 GROUNDWATER MONITORING SUMMARY

Detection and Assessment Monitoring Results:

	Detected
	Detected above Prediction Limit
	Detected above Prediction Limit and Groundwater Protection Standard (GWPS)

NS = Not Sampled

Antimony (Sb) Monitoring Results (mg/L)

	Monitoring Well															
Date	CCR-2	CCR-3	CCR-4	CCR-5	CCR-6	CCR-7	CCR-8	MW-7	MW-9	MW-12	MW-13	MW-14	MW-15	MW-16	MW-17	OW-2
	Down	Down	Down	Down/ Boundary	Mine Property	Mine Property	Mine Property	Up	Down	Down	Up	Up	Down	Down	MW16 Replacement Well/Down	Down
3/23-24/22	ND	ND	ND	ND	NS	NS	NS	ND	ND	ND	ND	ND	NS	NS	NS	ND
5/31-6/1/22	ND	ND	ND	ND	NS	NS	NS	ND	ND	ND	ND	ND	NS	NS	NS	ND
9/12-13/22	ND	ND	ND	ND	NS	NS	NS	ND	ND	ND	ND	ND	NS	NS	NS	ND
	Prediction Limit = 0.002, GWPS = 0.006															

Arsenic (As) Monitoring Results (mg/L)

	Monitoring Well															
Date	CCR-2	CCR-3	CCR-4	CCR-5	CCR-6	CCR-7	CCR-8	MW-7	MW-9	MW-12	MW-13	MW-14	MW-15	MW-16	MW-17	OW-2
	Down	Down	Down	Down/ Boundary	Mine Property	Mine Property	Mine Property	Up	Down	Down	Up	Up	Down	Down	MW16 Replacement Well/Down	Down
3/23-24/22	ND	ND	ND	0.00412	NS	NS	NS	ND	ND	ND	ND	ND	NS	NS	NS	ND
5/31-6/1/22	ND	ND	ND	0.00444	NS	NS	NS	ND	ND	ND	ND	ND	NS	NS	NS	ND
9/12-13/22	ND	ND	ND	ND	NS	NS	NS	ND	ND	ND	ND	ND	NS	NS	NS	ND
	Prediction Limit = 0.002, GWPS = 0.010															

Barium (Ba) Monitoring Results (mg/L)

	Dantam (Da) montoring resource (mg.2)															
	Monitoring Well															
Date	CCR-2	CCR-3	CCR-4	CCR-5	CCR-6	CCR-7	CCR-8	MW-7	MW-9	MW-12	MW-13	MW-14	MW-15	MW-16	MW-17	OW-2
	Down	Down	Down	Down/ Boundary	Mine Property	Mine Property	Mine Property	Up	Down	Down	Up	Up	Down	Down	MW16 Replacement Well/Down	Down
3/23-24/22	0.161	0.0780	0.176	0.086	NS	NS	NS	0.076	0.081	0.236	0.189	0.013	NS	NS	NS	0.050
5/31-6/1/22	0.147	0.0600	0.166	0.064	NS	NS	NS	0.074	0.070	0.188	0.176	0.013	NS	NS	NS	0.044
9/12-13/22	0.14	0.0780	0.19	0.081	NS	NS	NS	0.078	0.081	0.189	0.185	0.012	NS	NS	NS	0.046
	Prediction Limit = 0.2558, GWPS = 2															

Beryllium (Be) Monitoring Results (mg/L)

	Monitoring Well															
Date	CCR-2	CCR-3	CCR-4	CCR-5	CCR-6	CCR-7	CCR-8	MW-7	MW-9	MW-12	MW-13	MW-14	MW-15	MW-16	MW-17	OW-2
	Down	Down	Down	Down/ Boundary	Mine Property	Mine Property	Mine Property	Up	Down	Down	Up	Up	Down	Down	MW16 Replacement Well/Down	Down
3/23-24/22	ND	ND	ND	ND	NS	NS	NS	ND	0.0037	ND	ND	ND	NS	NS	NS	ND
5/31-6/1/22	ND	ND	ND	ND	NS	NS	NS	ND	0.00422	ND	ND	ND	NS	NS	NS	ND
9/12-13/22	ND	ND	ND	ND	NS	NS	NS	ND	0.00369	ND	ND	ND	NS	NS	NS	ND
	Prediction Limit = 0.001, GWPS = 0.004															

Boron (B) Monitoring Results (mg/L)

	Monitoring Well															
Date	CCR-2	CCR-3	CCR-4	CCR-5	CCR-6	CCR-7	CCR-8	MW-7	MW-9	MW-12	MW-13	MW-14	MW-15	MW-16	MW-17	OW-2
	Down	Down	Down	Down/ Boundary	Mine Property	Mine Property	Mine Property	Up	Down	Down	Up	Up	Down	Down	MW16 Replacement Well/Down	Down
3/23-24/22	ND	ND	ND	0.096	NS	NS	NS	ND	ND	ND	ND	ND	NS	NS	NS	ND
5/31-6/1/22 ⁽¹⁾	-	-	-	-	NS	NS	NS	-	-	-	-	-	NS	NS	NS	-
9/12-13/22	ND	ND	ND	0.101	NS	NS	NS	ND	ND	ND	ND	ND	NS	NS	NS	ND
	Prediction Limit = 0.050															

⁽¹⁾ Appendix III constituent not required to be monitored during the annual monitoring event.

Calcium (Ca) Monitoring Results (mg/L)

							Monito	oring Well								
Date	CCR-2	CCR-3	CCR-4	CCR-5	CCR-6	CCR-7	CCR-8	MW-7	MW-9	MW-12	MW-13	MW-14	MW-15	MW-16	MW-17	OW-2
	Down	Down	Down	Down/ Boundary	Mine Property	Mine Property	Mine Property	Up	Down	Down	Up	Up	Down	Down	MW16 Replacement Well/Down	Down
3/23-24/22	16.5	39.7	26.5	115	NS	NS	NS	31.5	46.4	33.8	21.7	0.645	NS	NS	NS	41.2
5/31-6/1/22 ⁽¹⁾	-	-	-	-	NS	NS	NS	-	-	-	-	-	NS	NS	NS	-
9/12-13/22	14.8	27.9	24.9	64.5	NS	NS	NS	31.5	33.2	26.2	20	0.58	NS	NS	NS	38.4
							Prediction I	Limit = 85.88	379							

⁽¹⁾ Appendix III constituent not required to be monitored during the annual monitoring event.

Cadmium (Cd) Monitoring Results (mg/L)

							Monito	oring Well	<u> </u>							
Date	CCR-2	CCR-3	CCR-4	CCR-5	CCR-6	CCR-7	CCR-8	MW-7	MW-9	MW-12	MW-13	MW-14	MW-15	MW-16	MW-17	OW-2
	Down Down Down Down Mine Property Property Up Down Down Up Up Down Down Down Well/Down Down Well/Down Down															
3/23-24/22	ND	ND	ND	ND	NS	NS	NS	ND	ND	ND	ND	ND	NS	NS	NS	ND
5/31-6/1/22	ND	ND	ND	ND	NS	NS	NS	ND	ND	ND	ND	ND	NS	NS	NS	ND
9/12-13/22	ND	ND	ND	ND	NS	NS	NS	ND	ND	ND	ND	ND	NS	NS	NS	ND
						Predic	ction Limit =	0.001, GWP	S = 0.005							

Chloride (CI) Monitoring Results (mg/L)

							· (-:,	tering rice	g. = /							
							Monito	oring Well								
Date	CCR-2	CCR-3	CCR-4	CCR-5	CCR-6	CCR-7	CCR-8	MW-7	MW-9	MW-12	MW-13	MW-14	MW-15	MW-16	MW-17	OW-2
	Down Down Down Down Mine Property Property Up Down Down Up Up Down Down Down Well/Down Well/Down Property Prope															
3/23-24/22	2.53	4.59	8.06	6.06	NS	NS	NS	3.19	361	62.8	3.76	19.5	NS	NS	NS	77.2
5/31-6/1/22 ⁽¹⁾	-	-	-	-	NS	NS	NS	-	-	-	-	-	NS	NS	NS	_
9/12-13/22	2.5	5.3	7.28	5.39	NS	NS	NS	3.5	320	38	4.14	18.3	NS	NS	NS	85.9
							Prediction I	Limit = 26.60	34							

⁽¹⁾ Appendix III constituent not required to be monitored during the annual monitoring event.

Chromium (Cr) Monitoring Results (mg/L)

							Monito	oring Well								
Date	CCR-2	CCR-3	CCR-4	CCR-5	CCR-6	CCR-7	CCR-8	MW-7	MW-9	MW-12	MW-13	MW-14	MW-15	MW-16	MW-17	OW-2
	Down	Down	Down	Down/ Boundary	Mine Property	Mine Property	Mine Property	Up	Down	Down	Up	Up	Down	Down	MW16 Replacement Well/Down	Down
3/23-24/22	ND	ND	ND	ND	NS	NS	NS	ND	ND	ND	ND	ND	NS	NS	NS	ND
5/31-6/1/22	ND	ND	0.0126	ND	NS	NS	NS	0.005	ND	ND	0.00941	ND	NS	NS	NS	ND
9/12-13/22	ND	ND	ND	ND	NS	NS	NS	ND	ND	ND	ND	ND	NS	NS	NS	ND
						Pred	iction Limit	= 0.001, GW	PS = 0.1							

Cobalt (Co) Monitoring Results (mg/L)

							Monito	oring Well								
Date	CCR-2	CCR-3	CCR-4	CCR-5	CCR-6	CCR-7	CCR-8	MW-7	MW-9	MW-12	MW-13	MW-14	MW-15	MW-16	MW-17	OW-2
	Down	Down	Down	Down/ Boundary	Mine Property	Mine Property	Mine Property	Up	Down	Down	Up	Up	Down	Down	MW16 Replacement Well/Down	Down
3/23-24/22	0.0065	0.0259	0.00434	0.0125	NS	NS	NS	ND	0.0175	0.00339	ND	ND	NS	NS	NS	ND
5/31-6/1/22	0.0117	0.0167	0.00272	0.00556	NS	NS	NS	ND	0.0154	0.0065	ND	ND	NS	NS	NS	ND
9/12-13/22	0.0103	0.0122	0.00343	0.00313	NS	NS	NS	ND	0.0137	0.00467	ND	ND	NS	NS	NS	ND
						Predic	ction Limit =	0.001, GWP	S = 0.006							

Fluoride (F) Monitoring Results (mg/L)

							. ,		<u> </u>							
							Monito	oring Well								
Date	CCR-2	CCR-3	CCR-4	CCR-5	CCR-6	CCR-7	CCR-8	MW-7	MW-9	MW-12	MW-13	MW-14	MW-15	MW-16	MW-17	OW-2
	Down Down Down Down/ Boundary Property Property Property Up Down Down Up Up Down Down Well/Down Down Well/Down															
3/23-24/22	ND	ND	ND	ND	NS	NS	NS	0.247	0.364	ND	ND	ND	NS	NS	NS	0.243
5/31-6/1/22	ND	0.25	ND	ND	NS	NS	NS	ND	0.34	0.69	ND	ND	NS	NS	NS	ND
9/12-13/22	ND	ND	ND	ND	NS	NS	NS	ND	0.34	ND	ND	ND	NS	NS	NS	0.24
						Pred	diction Limit	= 0.30, GWF	PS = 4.0							

Lead (Pb) Monitoring Results (mg/L)

							, ,		() ,							
							Monito	oring Well								
Date	CCR-2	CCR-3	CCR-4	CCR-5	CCR-6	CCR-7	CCR-8	MW-7	MW-9	MW-12	MW-13	MW-14	MW-15	MW-16	MW-17	OW-2
	Down Down Down Down Mine Property Property Up Down Down Up Up Down Down Well/Down Down Well/Down															
3/23-24/22	ND	ND	ND	ND	NS	NS	NS	ND	ND	ND	ND	ND	NS	NS	NS	ND
5/31-6/1/22	ND	ND	ND	ND	NS	NS	NS	ND	ND	ND	ND	ND	NS	NS	NS	ND
9/12-13/22	ND	ND	ND	ND	NS	NS	NS	ND	ND	ND	ND	ND	NS	NS	NS	ND
						Predic	ction Limit =	0.001, GWP	S = 0.015							

Lithium (Li) Monitoring Results (mg/L)

							. ,		` ` ,							
							Monito	oring Well								
Date	CCR-2	CCR-3	CCR-4	CCR-5	CCR-6	CCR-7	CCR-8	MW-7	MW-9	MW-12	MW-13	MW-14	MW-15	MW-16	MW-17	OW-2
	Down	Down	Down	Down/ Boundary	Mine Property	Mine Property	Mine Property	Up	Down	Down	Up	Up	Down	Down	MW16 Replacement Well/Down	Down
3/23-24/22	ND	0.131	ND	ND	NS	NS	NS	ND	0.076	ND	ND	ND	NS	NS	NS	0.052
5/31-6/1/22	ND	0.084	ND	ND	NS	NS	NS	ND	0.052	ND	ND	ND	NS	NS	NS	ND
9/12-13/22	ND	0.084	ND	0.064	NS	NS	NS	ND	0.063	ND	ND	ND	NS	NS	NS	0.06
						Predic	ction Limit =	0.050, GWP	S = 0.050							

Mercury (Hg) Monitoring Results (mg/L)

							Monito	oring Well								
Date	CCR-2	CCR-3	CCR-4	CCR-5	CCR-6	CCR-7	CCR-8	MW-7	MW-9	MW-12	MW-13	MW-14	MW-15	MW-16	MW-17	OW-2
	Down	Down	Down	Down/ Boundary	Mine Property	Mine Property	Mine Property	Up	Down	Down	Up	Up	Down	Down	MW16 Replacement Well/Down	Down
3/23-24/22 ⁽¹⁾	-	-	-	-	NS	NS	NS	-	-	-	-	-	NS	NS	NS	-
5/31-6/1/22	ND	ND	ND	ND	NS	NS	NS	ND	ND	ND	ND	ND	NS	NS	NS	ND
9/12-13/22 ⁽¹⁾	-	-	-	-	NS	NS	NS	-	-	-	-	-	NS	NS	NS	-
						Predic	ction Limit =	0.002, GWP	S = 0.002							

⁽¹⁾ Appendix IV constituent not required to be monitored during semi-annual assessment monitoring.

Molybdenum (Mo) Monitoring Results (mg/L)

							Monito	oring Well								
Date	CCR-2	CCR-3	CCR-4	CCR-5	CCR-6	CCR-7	CCR-8	MW-7	MW-9	MW-12	MW-13	MW-14	MW-15	MW-16	MW-17	OW-2
	Down	Down	Down	Down/ Boundary	Mine Property	Mine Property	Mine Property	Up	Down	Down	Up	Up	Down	Down	MW16 Replacement Well/Down	Down
3/23-24/22	ND	ND	ND	ND	NS	NS	NS	ND	ND	ND	ND	ND	NS	NS	NS	ND
5/31-6/1/22	ND	ND	ND	ND	NS	NS	NS	ND	ND	ND	ND	ND	NS	NS	NS	ND
9/12-13/22	ND	ND	ND	ND	NS	NS	NS	ND	ND	ND	ND	ND	NS	NS	NS	ND
						Predi	ction Limit =	0.001, GWF	S =0.100							

Selenium (Se) Monitoring Results (mg/L)

							Monito	oring Well								
Date	CCR-2	CCR-3	CCR-4	CCR-5	CCR-6	CCR-7	CCR-8	MW-7	MW-9	MW-12	MW-13	MW-14	MW-15	MW-16	MW-17	OW-2
	Down	Down	Down	Down/ Boundary	Mine Property	Mine Property	Mine Property	Up	Down	Down	Up	Up	Down	Down	MW16 Replacement Well/Down	Down
3/23-24/22	ND	ND	ND	ND	NS	NS	NS	ND	ND	ND	ND	ND	NS	NS	NS	ND
5/31-6/1/22	ND	ND	ND	ND	NS	NS	NS	ND	ND	ND	ND	ND	NS	NS	NS	ND
9/12-13/22	ND	ND	ND	ND	NS	NS	NS	ND	ND	ND	ND	ND	NS	NS	NS	ND
						Predi	ction Limit =	0.001, GWF	PS = 0.05							

Sulfate (SO4) Monitoring Results (mg/L)

							· / -	<u>J</u>								
							Monito	oring Well								
Date	CCR-2	CCR-3	CCR-4	CCR-5	CCR-6	CCR-7	CCR-8	MW-7	MW-9	MW-12	MW-13	MW-14	MW-15	MW-16	MW-17	OW-2
	Down Down Down Down Mine Property Property Property Up Down Down Up Up Down Down Down Well/Down Well/Down Well/Down Well/Down Well/Down Down Well/Down Up Up Down Down Well/Down															
3/23-24/22	12.2	369	30.3	612	NS	NS	NS	48.7	215	98.8	7.06	13.1	NS	NS	NS	126
5/31-6/1/22 ⁽¹⁾	•	-	-	-	NS	NS	NS	-	-	-	-	-	NS	NS	NS	-
9/12-13/22	10.3	164	19.4	218	NS	NS	NS	40.2	97.3	41.7	7.62	9.61	NS	NS	NS	94.2
			•		•		Prediction I	Limit = 44.81	02		•	•				

⁽¹⁾ Appendix III constituent not required to be monitored during the annual monitoring event.

Thallium (TI) Monitoring Results (mg/L)

	Monitoring Well															
Date	CCR-2	CCR-3	CCR-4	CCR-5	CCR-6	CCR-7	CCR-8	MW-7	MW-9	MW-12	MW-13	MW-14	MW-15	MW-16	MW-17	OW-2
	Down	Down	Down	Down/ Boundary	Mine Property	Mine Property	Mine Property	Up	Down	Down	Up	Up	Down	Down	MW16 Replacement Well/Down	Down
3/23-24/22 ⁽¹⁾	-	-	-	-	NS	NS	NS	-	-	-	-	-	NS	NS	NS	-
5/31-6/1/22	ND	ND	ND	ND	NS	NS	NS	ND	ND	ND	ND	ND	NS	NS	NS	ND
9/12-13/22 ⁽¹⁾	-	-	-	-	NS	NS	NS	-	-	-	-	-	NS	NS	NS	-
	Prediction Limit = 0.001, GWPS = 0.002															

⁽¹⁾ Appendix IV constituent not required to be monitored during semi-annual assessment monitoring.

Total Dissolved Solids (TDS) Monitoring Results (mg/L)

	Monitoring Well															
Date	CCR-2	CCR-3	CCR-4	CCR-5	CCR-6	CCR-7	CCR-8	MW-7	MW-9	MW-12	MW-13	MW-14	MW-15	MW-16	MW-17	OW-2
	Down	Down	Down	Down/ Boundary	Mine Property	Mine Property	Mine Property	Up	Down	Down	Up	Up	Down	Down	MW16 Replacement Well/Down	Down
3/23-24/22	128	495	203	851	NS	NS	NS	166	838	327	160	91	NS	NS	NS	361
5/31-6/1/22 ⁽¹⁾	-	-	-	-	NS	NS	NS	-	-	-	-	-	NS	NS	NS	-
9/12-13/22	132	287	174	515	NS	NS	NS	152	764	243	126	75	NS	NS	NS	374
	Prediction Limit = 320.8384															

⁽¹⁾ Appendix III constituent not required to be monitored during the annual monitoring event.

pH Monitoring Results (S.U.)

	promoting records (e.e.)															
	Monitoring Well															
Date	CCR-2	CCR-3	CCR-4	CCR-5	CCR-6	CCR-7	CCR-8	MW-7	MW-9	MW-12	MW-13	MW-14	MW-15	MW-16	MW-17	OW-2
	Down	Down	Down	Down/ Boundary	Mine Property	Mine Property	Mine Property	Up	Down	Down	Up	Up	Down	Down	MW16 Replacement Well/Down	Down
3/23-24/22	6.54	5.82	6.31	6.47	NS	NS	NS	6.42	4.14	5.72	6.78	4.96	NS	NS	NS	5.66
5/31-6/1/22	6.73	6.18	6.5	6.64	NS	NS	NS	6.47	4.55	5.95	6.81	4.87	NS	NS	NS	5.68
9/12-13/22	6.3	6.02	6.38	6.56	NS	NS	NS	6.3	4.31	5.75	6.46	4.8	NS	NS	NS	5.4
	Prediction Limit = 3.77 – 9.97															

Radium 226 and 228 Combined (Ra) Monitoring Results (pCi/L) (1)

	Monitoring Well															
Date	CCR-2	CCR-3	CCR-4	CCR-5	CCR-6	CCR-7	CCR-8	MW-7	MW-9	MW-12	MW-13	MW-14	MW-15	MW-16	MW-17	OW-2
	Down	Down	Down	Down/ Boundary	Mine Property	Mine Property	Mine Property	Up	Down	Down	Up	Up	Down	Down	MW16 Replacement Well/Down	Down
3/23-24/22	1.465	1.496	1.599	3.92	NS	NS	NS	1.47	2.113	1.43	1.702	1.201	NS	NS	NS	1.569
5/31-6/1/22	1.992	1.309	1.124	1.238	NS	NS	NS	1.004	1.874	1.209	1.404	1.348	NS	NS	NS	1.331
9/12-13/22	2.17	1.968	1.917	1.185	NS	NS	NS	1.863	2.65	1.21	1.907	1.8	NS	NS	NS	2.022
	Prediction Limit = X, GWPS = 5 pCi/L															

⁽¹⁾ Per MS Dept. of Health (BJ Smith) and EPA guidance for drinking water standards, Radium 226/228 Combined is calculated by adding Radium 226 and Radium 228 Activity (Act) concentrations together if they are detected above the MDC; otherwise, the MDC is used.